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Abstract

This paper proves two theorems for homogeneous juries that arise from different solutions
to the problem of aggregation of dichotomous choice. In the first theorem, negative correla-
tion increases the competence of the jury, while positive correlation has the opposite effect.
An enlargement of the jury with positive correlation can be detrimental up to a certain size,
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correct for a given competence and dependence structure.
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1 Introduction

Condorcet argued for the superiority of collective wisdom over individual wisdom. His famous

1785 essay rationalized entrusting important decisions to a group rather than to an individual,

and advocated simple majority as the best collective decision rule. The larger the group, the

more likely it is to discover the truth. The larger the jury, the more likely it is to convict the

guilty or acquit the innocent. The significance of Condorcet’s analysis lies in offering a positive

argument in favor of the democratic ideas widely appreciated on normative grounds.

Condorcet’s Jury Theorem (CJT) is a mathematical formalization of his ideas. In its classic

version the theorem rests on the following four assumptions: a) the jury decides between two

alternatives by voting under simple majority rule, b) each juror has a more than an even proba-

bility of being correct (competence), c) these probabilities are equal for all jurors (homogeneity),

and d) each juror votes independently. Then,

1. any jury comprising an odd number of jurors is more likely than any single juror to select

the correct alternative;

2. this likelihood becomes a certainty as the size of the jury tends to infinity.

It is customary to refer to 1 as the non-asymptotic and 2 as the asymptotic part of the theorem.

Much research is concerned with relaxing the homogeneity and independence assumptions.1

Both assumptions are unrealistic, as jurors are subject to many individual and contextual factors,

which are likely to influence their decisions in different ways. A realistic model should allow

varying and correlated competencies that translate into varying probabilities and correlations

between the votes. The aim of such a model is to forecast the probabilities of different voting

1This literature assumes sincere voting. Sincere voting may not be an equilibrium behavior in the presence of
informational asymmetries among jurors (Austen-Smith and Banks 1996, Feddersen and Pesendorfer 1997).
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outcomes.

I assume that the competence and dependence of a jury is specified by the probability of a

juror’s vote being correct and the Pearson product-moment correlation coefficient between two

correct votes as the simplest and most widely used measure of probabilistic dependence. The

probabilities and correlation coefficients can be assumed (voting scenario) or estimated from

ballot data.

Computing the probability of the jury being correct requires a joint probability distribution

on the set of voting profiles, but individual probabilities and correlation coefficients do not

uniquely define a distribution. For a jury of size n, distributions satisfying given probabilities

and correlation coefficients form a convex set in a 2n dimensional Euclidean space, where 2n is

the number of all conceivable voting profiles in a jury of size n.

Solving the aggregation problem amounts to finding a joint probability distribution that

has given individual probabilities and correlation coefficients. Bahadur (1961) characterizes the

solution using higher-order correlation coefficients. The difficulty in applying his result lies in

the large number of parameters it therefore requires. Estimating higher-order correlations to a

reasonable degree of accuracy requires extensive voting data.

Alternatively, one can use regularization to find a particular solution (Van Der Geest 2005,

Kaniovski and Pflug 2007). Regularization is a widely used technique that imposes additional

criteria on the solution in order for it to have certain properties, in our case uniqueness. It offers

a practical solution to the aggregation problem.

Since in its full generality the aggregation problem admits varying probabilities and cor-

relation coefficients, it can be used to model both correlated as well as heterogeneous votes

numerically. Workable explicit solutions are available for homogeneous juries only. In a homoge-

neous jury each vote has an equal probability of being correct, and each pair of votes correlates
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with the same coefficient of correlation.

I prove two non-asymptotic theorems for homogeneous juries that arise from different solu-

tions to the aggregation problem. Both theorems corroborate existing results, but one theorem

differs substantially with respect to tolerance of correlation. It shows that the probability of a

homogeneous jury collectively making the correct decision under simple majority rule can be

independent of the coefficient of correlation.

Next I review the extensions of CJT to heterogeneous and correlated votes. Section 3 states

the aggregation problem and its solutions. Section 4 presents two jury theorems based on explicit

solutions. Section 5 provides examples illustrating the effect of the probabilities and correlations

on a jury’s competence. Section 6 discusses the bounds to a jury’s competence as the minimum

and maximum probability of the jury being correct. The final section provides a summary.

2 Extensions of Condorcet’s Jury Theorem

Proofs of the classic version of CJT can be found in Young (1988) and Boland (1989). A proof

is obtained using a recurrence relation for the collective probability of deciding correctly when

the size of the jury increases by two jurors. Monotonicity of this probability with respect to size

establishes both parts of the theorem.

2.1 Heterogeneous but independent jurors

The non-asymptotic part of the theorem does not generally hold for heterogeneous juries. In a

heterogeneous jury all jurors are competent, but differently so. Ben-Yashar and Paroush (2000)

propose a refinement of the CJT that remains valid regardless of the specific distribution of

competence within a jury. They show the non-asymptotic part of CJT to hold if the average
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competence of a randomly chosen group of more than three jurors is higher than that of any

single juror. Berend and Sapir (2005) extended this result to show that a random augmentation

of a randomly chosen group always improves the competence of the group.

As for the asymptotic part of the theorem, Boland (1989) already proposed a refinement

in terms of the average competence for which it holds for a heterogeneous jury. Berend and

Paroush (1998) provide the most general result.

2.2 Correlated votes

Existing models of correlated votes are of two kinds: one that endorses an explicitly sequential

view of voting which induces a joint probability distribution on the set of voting profiles, and

one that studies the conditions under which the collective competence increases with the size,

given a joint probability distribution.

In Boland (1989) and Boland, Proschan and Tong (1989) the course of voting is shaped by

an opinion leader’s vote or an external factor, such as the quality of court evidence. Berg (1993)

models voting as an urn process, in which a juror’s competence depends on all preceding votes.

There is a state dependence in the process of reaching a decision, with the possibility of a lock-in

on the incorrect alternative (Page 2006). There is both heterogeneity, as a juror’s probability

of being correct may depend on her position in the voting sequence, and dependence, although

pairwise correlations may decay with the time lag between the votes.

Ladha (1993) formulates a juror’s competence as a probability conditional on the juror’s

information. While the votes are conditionally independent, unconditionally they are positively

correlated. This way of looking at competence is useful when there is an explicit need to model

the role of common information. Ladha (1992) obtains sufficient conditions for both parts of the

theorem as an upper bound on the average of positive correlation coefficients. The probability
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of the jury’s decision being correct increases with the competency of the jurors and decreases

with positive correlation between their competencies, subject to an inverse relationship between

the size of the jury and the admissible dependence. Ladha (1993) obtains stronger results

for exchangeable binary random variables; Ladha (1995) extends them to several particular

distributional assumptions.

Berend and Sapir (2007) ask whether adding a randomly chosen juror to a randomly chosen

group of jurors improves the group’s competence, and derive a necessary and sufficient condi-

tion in terms of the joint probability distribution on the set of voting profiles. We will presently

see that, regardless of how correlations arise, any such distribution has Bahadur’s representa-

tion. His analysis offers a unifying theoretical framework for dichotomous choice models with

correlation.

3 The aggregation problem

In a jury comprising an odd number of jurors n, let pi, i = 1, 2, . . . , n, denote the probability

of the i-th juror voting for the correct alternative and ci,j, 1 ≤ i < j ≤ n, the correlation

coefficient between any two such votes. There will be C2
n such correlation coefficients, one for

each order-independent pair of votes.2 The correlation coefficient ci,j is a pairwise measure of

dependence.

A voting profile is a binary vector v = (v1, v2, . . . , vn), whose i-th coordinate vi = 1 if juror

i votes for the correct alternative, and vi = 0 otherwise. Let V be the set of all voting profiles,

V(i) the set of voting profiles in which juror i votes for the correct alternative, i.e. the set of all

binary vectors v such that vi = 1, and V(i, j) = V(i) ∩ V(j) the set of voting profiles in which

jurors i and j both vote for the correct alternative, i.e. the set of all binary vectors v such that

2Here and below Cx

n denotes the binomial coefficient Cx

n = n!/[x!(n−x)!] for n, x ∈ N, where Cx

n = 0 for n < x.
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vi = vj = 1.

The sets V, V(i) and V(i, j) respectively contain 2n, 2n−1 and 2n−2 elements. For example,

for n = 3 there will be eight voting profiles A:(1,1,1), B:(1,1,0), C:(1,0,1), D:(1,0,0), E:(0,1,1),

F:(0,1,0), G:(0,0,1), and H:(0,0,0). The set V contains all eight vectors. The set V(2) contains

vectors A, B, E, and F, as only they have 1 in the second coordinate. The set V(2, 3) contains

vectors A and E, as only they have 1 in the second and third coordinates.

A joint probability distribution πv on the set of voting profiles V that satisfies given marginal

probabilities and correlation coefficients must satisfy the following constraints:

πv ≥ 0 for all v ∈ V; (1)

∑

v∈V

πv = 1; (2)

∑

v∈V(i)

πv = pi for all i = 1, 2, . . . , n; (3)

∑

v∈V(i,j)

πv = pipj + ci,j
√

piqipjqj for all qi = 1 − pi, 1 ≤ i < j ≤ n. (4)

Let Vi be the Bernoulli random variable signifying the value of the vote and vi be its realization.

Equality (4) follows since for two Bernoulli random variables Vi, Vj with E(Vi) = pi, E(Vj) = pj:

ci,j =
P{Vi = 1, Vj = 1} − pipj√

piqipjqj

.

Constraints (1)-(4) define a convex polytope ∆ ⊂ R
2n

. Any point in ∆ is a suitable distribu-

tion. Such a distribution does not exist if ∆ = ∅, i.e. when the constraints are inconsistent. The

system (2)-(4) comprising 1 + n + C2
n equations for 2n unknowns typically has infinitely many

solutions for n ≥ 3. Consequently, if a distribution exists, it will typically not be unique. Two

methods of finding a particular solution include adding sufficiently many equations to uniquely
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characterize the distribution, or regularization.

3.1 Bahadur’s solution (B-solution)

Bahadur’s (1961) method uses higher-order correlations to uniquely characterize a distribution.

This introduces further linear constraints to (2)-(4) until the feasible set ∆ becomes a singleton.

Higher order correlation coefficients measure dependence between k-tuples of votes. Let

Zi = (Vi − pi)/
√

piqi for all i = 1, 2, . . . , n. Then,

ci,j = E(ZiZj) for all 1 ≤ i < j ≤ n;

ci,j,k = E(ZiZjZk) for all 1 ≤ i < j < k ≤ n;

. . .

c1,2,...,n = E(Z1Z2 . . . Zn).

In total, there are
∑n

i=2 Ci
n = 2n −n−1 correlation coefficients, which together with n marginal

probabilities uniquely define a distribution on 2n voting profiles.

Bahadur’s solution is given by

πv = π̄v

(

1 +
∑

i<j

ci,jzizj +
∑

i<j<k

ci,j,kzizjzk + · · · + c1,2,...,nz1z2 . . . zn

)

,

where π̄v =
∏n

i=1 pvi

i q1−vi

i denotes the distribution in the case of independent votes.3

Bahadur’s method requires an excessive number of parameters to characterize the distribu-

tion. To reduce complexity, he proposes a truncated solution (B-solution), which accounts for

3Bahadur (1961) ascribes the discovery of this representation to Lazarsfeld (1956).
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pairwise correlation coefficients only

πv = π̄v

(

1 +
∑

i<j

ci,jzizj

)

.

It is accurate if all higher-order correlation coefficients are zero. If some higher-order coefficients

are not zero, then additional constraints on ci,j’s for given n and pi’s are required for the B-

solution to have non-negative coordinates.

In the special case of a homogeneous voting body in which pi = p and ci,j = c, πv can be

expressed in terms of the number of votes in favor of the correct alternative t(v) =
∑n

i=1 vi.
4 In

this case the B-solution simplifies to

πv = π̄v

{

1 +
c

2pq

[

t2 − t + p(n − 1)(np − 2t)

]}

, where π̄v = ptqn−t. (5)

Bahadur provides exact bounds on the common correlation coefficient c required for (5) to define

a distribution. Denote γ = mint{[t − (n − 1)p − 0.5]2} ≤ 0.25. Then,

− 2q

pn(n − 1)
≤ c ≤ 2pq

(n − 1)pq + 0.25 − γ
. (6)

The bound on n is tighter for negative c than for positive c. For c > 0, c ∼ O(n−1), whereas

|c| ∼ O(n−2) for c < 0. The nature of the constraints is such that for the given p’s, |c| → 0 as

n → ∞. That is, in a large homogeneous jury each pair of jurors may be only weakly dependent.

It can be easily verified that c ≤ 2/(n − 1) for c > 0.

The following numerical methods impose the non-negativity constraint on the solution.

4Instead of t(v), I will use the simpler notation t, keeping in mind that the sum of the coordinates depends on
the vector, i.e. the voting profile.
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3.2 Regularization using an entropy function (E-solution)

Regularization ensures uniqueness by choosing a particular solution as a minimum point in ∆

of a strictly convex function f : R
2n 7→ R.

Van Der Geest (2005) proposes choosing f =
∑

v
πv log(πv) so as to maximize the entropy

function H = −f .5 This distribution can be obtained by solving the following non-linear opti-

mization problem:

min
πv

∑

v

πv log(πv),

subject to constraints (2)-(4). Constraint (1) is superfluous, as the objective function is not

defined for πv = 0. Solution vectors generated using this method have strictly positive coor-

dinates, so that all voting profiles occur with a positive probability. The complexity of the

objective function makes an explicit solution unfeasible.

3.3 Regularization using a quadratic metric (Q-solution)

The gist of this method is as follows: Given a benchmark distribution dv and a distance measure

f , choose a point in ∆ that is closest to dv in the sense of f . Kaniovski and Pflug (2007) propose

dv = π̄v and f as the sum of squares of deviations. This choice leads to the following quadratic

optimization problem:

min
πv

0.5
∑

v

(πv − π̄v)2,

subject to constraints (1)-(4). Solution vectors generated by this method may have zero coordi-

nates, so that some voting profiles may occur with probability zero.

With the full set of constraints imposed, the above quadratic optimization problem can only

5Maximum entropy distributions have a long tradition in statistical physics and information theory (Levine
and Tribus 1978).
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be solved numerically. For pi = p, Kaniovski (2008a) obtains an explicit solution by the method

of Lagrangian multipliers. In the case of a homogeneous jury, when pi = p and ci,j = c, the

Q-solution reads

πv = π̄v + 22−npqc

[

0.5n(n − 1) + 2t(t − n)

]

, where π̄v = ptqn−t. (7)

Similarly to the B-solution, it ignores the complementary slackness condition imposed by (1)

and thus is valid only if πv ≥ 0 for all v.

3.4 Remarks on applications

Unlike sequential voting models that capture group dynamics, the above framework applies in

the baseline case of simultaneous and anonymous voting, or when the expertise of several experts

whose opinions have been expressed individually is pooled into a collective judgment. This is

the classic setting of CJT.

Bahadur’s is the only explicit and general solution to the aggregation problem. However,

there are two practical reasons to prefer the numerical methods based on regularization in applied

work. First, they require significantly fewer parameters. Second, they can be applied even if not

all pairwise correlation coefficients are known. In this case one should use those constraints which

contain the known correlation coefficients, leaving the others unspecified. Once a probability

distribution satisfying the marginal probabilities and known correlation coefficients is found, the

unknown correlation coefficients can be inferred from it. This allows us to first specify and then

refine an incomplete model, offering considerable flexibility in applied work.

Models of actual juries which impose competence and correlation structures should use the

numerical solutions in which the full set of constraints is imposed. If distributions satisfying the
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probabilities and correlation coefficients exist, a numerical solution will find one such distribu-

tion. Examples in Section 5 show that numerical solutions differ from the B-solution, implying

that some higher-order correlations differ from zero.

Once a distribution is found, the probabilities any event of interest can be computed. Kan-

iovski (2008a) computes the probability of casting a decisive vote in simple-majority games with

equal voting weights. He then modifies Penrose’s (1946) Square Root Rule for the apportion-

ment of voting power in two-tier voting systems, in which votes in the bottom tiers correlate.

Kaniovski (2008b) provides several examples of Boland et al.’s (1989) opinion-leader theme.

4 Two jury theorems

The above solutions can be used to compute the probabilities of any voting outcome and therefore

also the probability of a jury collectively making the correct decision under any given voting

rule. Under simple majority rule this probability equals

Mn(p, c) =

n∑

t= n+1

2

πv. (8)

The notation highlights the dependence of this probability on the vector of n marginal probabil-

ities p and the vector of C2
n pairwise correlation coefficients c. I will refer to Mn under B, E, and

Q solutions as MB
n , ME

n and MQ
n . The distribution is unique in the case of independent votes, so

MB
n (p, 0) = ME

n (p, 0) = MQ
n (p, 0) = Mn(p, 0). For a homogeneous jury, Mn(p, c) = Mn(p, c)

as pi = p and ci,j = c.

Next I prove two jury theorems based on the B and Q solutions.

Theorem 1. Given the B-solution, the probability of a homogeneous jury collectively making
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the correct decision under simple majority rule is given by

MB
n (p, c) = Mn(p, 0) + cn(n − 1)(0.5 − p)C

n−1

2

n−2 p
n−1

2 q
n−1

2 .

Proof. Substitute the solution (5) in probability (8). Since t(v) =
∑n

i=1 vi, any sums involving

t must be understood as double-sums. We have,

n∑

t= n+1

2

t =

n∑

t= n+1

2

Ct
nt = n

n∑

t= n+1

2

Ct−1
n−1; (9)

n∑

t= n+1

2

t2 =

n∑

t= n+1

2

Ct
nt2 = n(n − 1)

n∑

t= n+1

2

Ct−2
n−2 + n

n∑

t= n+1

2

Ct−1
n−1, (10)

and

MB
n (p, c) = Mn(p, 0) +

cn(n − 1)

2pq

[ n∑

t= n+1

2

Ct−2
n−2p

tqn−t

︸ ︷︷ ︸

S1

−2p

n∑

t= n+1

2

Ct−1
n−1p

tqn−t

︸ ︷︷ ︸

S2

+p2Mn(p, 0)

]

. (11)

Simplify S1 and S2 using the following identities C
n−3

2

n−2 = C
n−1

2

n−2 = 0.5C
n−1

2

n−1 and the recursive

equations:

Mn(p, 0) = Mn−1 + 2pC
n−1

2

n−2 p
n−1

2 q
n−1

2 , where Mn−1 =
n−1∑

t= n+1

2

Ct
n−1p

tqn−t−1;

Mn(p, 0) = Mn−2 +
p

q
(3 − 2p)C

n−1

2

n−2 p
n−1

2 q
n−1

2 , where Mn−2 =
n−2∑

t= n+1

2

Ct
n−2p

tqn−t−2.
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Let i = t − 2 and j = t − 1. Then,

S1 =

n−2∑

i= n−3

2

Ci
n−2p

i+2qn−i−2 = p2

[

Mn−2 + C
n−3

2

n−2 p
n−3

2 q
n−1

2 + C
n−1

2

n−2 p
n−1

2 q
n−3

2

]

= p2

[

Mn−2 +
1

pq
C

n−1

2

n−2 p
n−1

2 q
n−1

2

]

= p2Mn(p, 0) + pq(1 + 2p)C
n−1

2

n−2 p
n−1

2 q
n−1

2 ;

S2 =

n−1∑

j= n−1

2

Ci
n−1p

j+1qn−j−1 = p

[

Mn−1 + C
n−1

2

n−1 p
n−1

2 q
n−1

2

]

= pMn(p, 0) + 2pqC
n−1

2

n−2 p
n−1

2 q
n−1

2 .

A substitution of S1 and S2 in (11) completes the proof.

Several ceteris paribus results follow, provided condition (6) on the existence of a distribution

holds, and the jury is competent (p > 0.5). Two corollaries follow immediately:

Corollary 1.1. MB
n (p, c1) > MB

n (p, c2) for c1 < c2 < 0 and c2 > c1 > 0. Negative correlation

increases the competence of a homogeneous and competent jury; positive correlation decreases

the competence of such a jury.

Corollary 1.2. MB
n (0.5, c1) = MB

n (0.5, c2) for c1 6= c2. Correlation has no effect on the com-

petence of a randomizing jury.

In the following, we assume c > 0. Consider dMB
n (p, c)/dp. Following Boland (1989),

Mn(p, 0) = nC
n−1

2

n−1

p∫

0

x
n−1

2 (1 − x)
n−1

2 dx whence
dMn(p, 0)

dp
= nC

n−1

2

n−1 p
n−1

2 q
n−1

2 .

Substituting the above expression and using the identity C
n−1

2

n−2 = 0.5C
n−1

2

n−1 we obtain

dMB
n (p, c)

dp
= nC

n−1

2

n−1 p
n−3

2 q
n−3

2 [(1 − 0.5c(n − 1))pq + 0.5c(n − 1)2(0.5 − p)2].
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This derivative is positive for c > 0 in view of the right hand side of inequality (6), which implies

c ≤ 2/(n − 1). Consequently,

Corollary 1.3. When c > 0, MB
n (p1, c) > MB

n (p2, c) for p1 > p2. For positive correlation, the

higher the individual competence, the higher collective competence is.

Next, consider MB
n (p, c) − MB

n−2(p, c). Following Boland (1989),

Mn(p, 0) − Mn−2(p, 0) = (p − q)C
n−1

2

n−2 p
n−1

2 q
n−1

2 .

Substituting the above expression and using the identity (n−1)C
n−1

2

n−2 = 4(n−2)C
n−3

2

n−4 we obtain

MB
n (p, c) − MB

n−2(p, c) = C
n−1

2

n−2 p
n−1

2 q
n−1

2

[

(p − q) + c(n − 1)(0.5 − p)

(

n − n − 3

4pq

)

︸ ︷︷ ︸

F (n)

]

.

For c > 0, the term involving c is negative if F (n) > 0, or when n < 3
1−4pq

.6 This suggests the

final corollary to Theorem 1:

Corollary 1.4. For positive correlation, the effect of larger size on competence is ambiguous,

but becomes positive for a sufficiently large size.

Theorem 1 established that the probability of the jury being correct increases with the juror’s

competency and decreases with positive correlation between their competencies; and negative

correlation is beneficial. However, the second theorem produces a remarkably different result.

Theorem 2. Given the Q-solution, the probability of a homogeneous jury collectively making

the correct decision under simple majority rule is independent of the correlation coefficient, i.e.

MQ
n (p, c) = Mn(p, 0).

6The fraction is nonnegative because max[pq] = 0.25 (at p = 0.5).

15



Proof. Substitute the solution (7) in the probability (8). To prove the theorem, show

n∑

t= n+1

2

[

0.5n(n − 1) + 2t(t − n)

]

= 0.

In view of
∑n

t= n+1

2

n(n − 1) = 2n−1n(n − 1) and the identities (9)-(10), the above equality is

equivalent to
n∑

t= n+1

2

Ct−1
n−1 −

n∑

t= n+1

2

Ct−2
n−2 = 2n−3.

Let us prove the above identity. Subtracting

(

C
n−1

2

n−1 − C
n−3

2

n−2

)

+

(

C
n+1

2

n−1 − C
n−1

2

n−2

)

+ · · · +
(

Cn−1
n−1 − Cn−2

n−2

)

=

(

C
n−1

2

n−2 + C
n+1

2

n−2

)

+ · · · + 0.

This sum equals one half of the sum
∑n

t=0 Ct
n−2 = 2n−2, which is symmetric about C

n−3

2

n−2 = C
n−1

2

n−2 ,

and which follows from the basic identity
∑n

t=0 Ct
n = 2n.

For the Q-solution the probability of a jury being correct is independent of the correlation

coefficient, provided the jury is homogeneous and the decision is made by voting under simple

majority rule. In this case the expertise of a homogeneous jury cannot be impaired or improved

by the independence of individual competencies. In order for a correlation to make a difference,

either the jury must be heterogeneous or a supermajority must be the decision rule.

The significance of Theorem 2 lies in showing that an empirically relevant second-order

dependence structure such as a correlation matrix between the votes conveys little information

about the sensitivity of the Condorcet probability to correlation. The possibilities range from

completely insensitive, to very sensitive, as the examples in Section 5 show.
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4.1 The special case c = 1

Discussion of Section 3 shows that joint probability distributions typically do not exist for very

high correlation. However, in the special case of perfectly positively correlated votes the joint

probability distribution exists and is given by:

P (v1 = v2 = · · · = vn = 1) = p;

P (v1 = v2 = · · · = vn = 0) = 1 − p.

The collective competence of a perfectly correlated jury equals that of a single juror, or Mn(p, 1) =

p.

Note that a joint probability distribution does not exist when the votes are perfectly nega-

tively correlated. If one juror is correct whenever another is incorrect, and vice versa, then by

virtue of binary choice a third juror cannot be simultaneously discordant with the former two.

Three jurors cannot be mutually contrarian. Positive correlations reflect common rather than

contrarian tendencies. They make high consensus voting outcomes more probable than they

would be if the jurors were independent.7

5 Examples

Table 1 illustrates the effect of correlation for n = 3. In the case of equally probable and uncor-

related votes, all eight voting profiles are equally probable (I). Positive correlation makes broad

coalitions more probable and tight coalitions less probable, whereas negative correlation has the

opposite effect (II, III). All three solutions produce identical distributions. The competence of

a randomizing jury does not depend on c.

7For a further discussion of correlations as a model of preferences, see Kaniovski (2008b).
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Example IV of competent and independent jurors corresponds with the assumptions of CJT.

The jury’s competence is reflected in higher probabilities of voting profiles in which the correct

decisions are frequent, and a higher probability of collectively making the correct decision. The

distribution in the case of correlated votes is unique.

Introducing positive correlation increases the probability of occurrence of all broad coali-

tions, including those with a high proportion of incorrect decisions (V). Yet for the Q-solution,

these two effects offset exactly in the subset of voting profiles in which the jury collectively

decides correctly, leaving MQ
n (p, c) unchanged. Example VI shows that this does not hold for

heterogeneous juries.

All examples suggest that simple majority rule is essential for invariance of MQ
n (p, c). In all

examples positive correlation improves the likelihood of the correct decision being reached when

a supermajority is required to reach a verdict, but the higher the supermajority, the lower the

likelihood that the jury will arrive at the correct decision.

TABLE 1 ABOUT HERE

6 The bounds approach

The fact that the marginal probabilities and correlation coefficients do not uniquely define a

distribution necessitates choosing a particular distribution with all the arbitrariness this entails.

The concept of the bounds approach is to find the distributions that minimize or maximize

Mn(p, c) for given p and c by solving linear programming problems:

Mn(p, c) = min
πv

Mn(p, c) and Mn(p, c) = max
πv

Mn(p, c),
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subject to constraints (1)-(4). Probabilities Mn(p, c) and Mn(p, c) provide the bounds on the

jury’s competence consistently with a given competence and dependence structure.

Table 2 presents the bounds for the six examples of the previous section. The probabilities

and correlation coefficients do not uniquely define a distribution. In all cases, solutions πv and

πv differ due to different third-order correlation coefficients, leading to the bounds on Mn(p, c).

The solutions offer a simple means of generating distinct distributions, as the convexity of

∆ ensures that an infinite number of them can be obtained as πv = λπv + (1− λ)πv, λ ∈ [0, 1].

Note that πv = πv does not imply the uniqueness of a distribution satisfying constraints (2)-(4),

as they do not uniquely define a distribution.

TABLE 2 ABOUT HERE

7 Summary

This paper proves two jury theorems for homogeneous juries with correlated votes. The theorems

arise from different solutions to the problem of aggregation of dichotomous choice. The solution

is a joint probability distribution on the set of voting profiles that satisfies given probabilities and

correlation coefficients. Bahadur (1961) offers a general solution to the aggregation problem in

terms of higher-order correlation coefficients. However, his solution requires an excessive number

of parameters and extensive data in order to arrive at reliable estimates.

In the empirically relevant case of a dependence structure specified only up to the pairwise

correlation coefficients, the distribution is not unique. Different distributions produce different

probabilities of a jury being correct. I obtain two non-asymptotic theorems for homogeneous

juries with correlated votes, as explicit solutions exist for such juries only.

The first theorem uses Bahadur’s solution truncated to the pairwise correlations. It shows
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that negative correlation increases the competence of the jury, while positive correlation de-

creases the competence of the jury. It also shows that for positive correlation, an enlargement of

the jury can be detrimental up to a certain size beyond which it becomes beneficial. The second

theorem finds a family of distributions for which this probability under simple majority rule is

independent of the correlation coefficient. The two theorems are obtained using two different

solutions to the aggregation problem. Bounds on the admissible correlation coefficient for each

solution are provided.

The multiplicity of solutions when only pairwise correlations are known allows us to compute

the bounds on the competence of a jury as the maximum and minimum probability of it being

correct for a given competence and dependence structure.

I conclude the paper by emphasizing the approach I have discussed is sufficiently general

to be useful in empirical applications. First, it can be used to construct an accurate model

of the jury based on prior beliefs about the competence of individual jurors and the degree of

commonality or rivalry among their competencies. Once expressed in terms of the probabilities

and correlation coefficients, these beliefs could be used to forecast the probabilities of different

voting outcomes, including the probability of a jury making the correct decision under any

given voting rule. Second, it can be used for the empirical modeling of actual juries based on

past voting behavior. This line of research includes the empirical testing of the independence

assumption.
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Table 1: The probability of a correct collective decision M3(p, c)

I II III IV V VI

p = 0.5 p = 0.5 p = 0.5 p = 0.75 p = 0.75 p1 = 0.75
c = 0 c = 0.2 c = −0.2 c = 0 c = 0.2 p2,3 = 0.6

c = 0.2

v1 v2 v3 B-solution
1 1 1

√
0.125 0.2 0.05 0.422 0.506 0.357

1 1 0
√

0.125 0.1 0.15 0.141 0.094 0.136
1 0 1

√
0.125 0.1 0.15 0.141 0.094 0.136

1 0 0 0.125 0.1 0.15 0.047 0.056 0.122
0 1 1

√
0.125 0.1 0.15 0.141 0.094 0.051

0 1 0 0.125 0.1 0.15 0.047 0.056 0.056
0 0 1 0.125 0.1 0.15 0.047 0.056 0.056
0 0 0 0.125 0.2 0.05 0.016 0.044 0.086
MB

3 (p, c) 0.5 0.5 0.5 0.844 0.788 0.679
v1 v2 v3 E-solution
1 1 1

√
0.125 0.2 0.05 0.422 0.498 0.351

1 1 0
√

0.125 0.1 0.15 0.141 0.102 0.141
1 0 1

√
0.125 0.1 0.15 0.141 0.102 0.141

1 0 0 0.125 0.1 0.15 0.047 0.048 0.116
0 1 1

√
0.125 0.1 0.15 0.141 0.102 0.057

0 1 0 0.125 0.1 0.15 0.047 0.048 0.051
0 0 1 0.125 0.1 0.15 0.047 0.048 0.051
0 0 0 0.125 0.2 0.05 0.016 0.052 0.092
ME

3 (p, c) 0.5 0.5 0.5 0.844 0.804 0.691
v1 v2 v3 Q-solution
1 1 1

√
0.125 0.2 0.05 0.422 0.478 0.336

1 1 0
√

0.125 0.1 0.15 0.141 0.122 0.156
1 0 1

√
0.125 0.1 0.15 0.141 0.122 0.156

1 0 0 0.125 0.1 0.15 0.047 0.028 0.102
0 1 1

√
0.125 0.1 0.15 0.141 0.122 0.072

0 1 0 0.125 0.1 0.15 0.047 0.028 0.036
0 0 1 0.125 0.1 0.15 0.047 0.028 0.036
0 0 0 0.125 0.2 0.05 0.016 0.072 0.106

MQ
3 (p, c) 0.5 0.5 0.5 0.844 0.844 0.72

√
indicates correct collective decisions



Table 2: Bounds on a jury’s competence M3(p, c), M3(p, c)

I II III IV V VI

p = 0.5 p = 0.5 p = 0.5 p = 0.75 p = 0.75 p1 = 0.75
c = 0 c = 0.2 c = −0.2 c = 0 c = 0.2 p2,3 = 0.6

c = 0.2

v1 v2 v3 πv

1 1 1
√

0.25 0.3 0.1 0.438 0.55 0.408
1 1 0

√
0 0 0.1 0.125 0.05 0.084

1 0 1
√

0 0 0.1 0.125 0.05 0.084
1 0 0 0.25 0.2 0.2 0.063 0.1 0.173
0 1 1

√
0 0 0.1 0.125 0.05 0

0 1 0 0.25 0.2 0.2 0.063 0.1 0.108
0 0 1 0.25 0.2 0.2 0.063 0.1 0.108
0 0 0 0 0.1 0 0 0 0.035
M3(p, c) 0.25 0.3 0.4 0.813 0.7 0.577
v1 v2 v3 πv

1 1 1
√

0 0.1 0 0.375 0.45 0.300
1 1 0

√
0.25 0.2 0.2 0.188 0.15 0.192

1 0 1
√

0.25 0.2 0.2 0.188 0.15 0.192
1 0 0 0 0 0.1 0 0 0.066
0 1 1

√
0.25 0.2 0.2 0.188 0.15 0.108

0 1 0 0 0 0.1 0 0 0
0 0 1 0 0 0.1 0 0 0
0 0 0 0.25 0.3 0.1 0.063 0.1 0.142

M3(p, c) 0.75 0.7 0.6 0.938 0.9 0.792

√
indicates correct collective decisions
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