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Abstract

We propose a new power index based on the minimum sum representation (MSR) of a
weighted voting game. The MSR offers a redesign of a voting game, such that voting power
as measured by the MSR index becomes proportional to voting weight. The MSR index is a
coherent measure of power that is ordinally equivalent to the Banzhaf, Shapley-Shubik and
Johnston indices. We provide a characterization for a bicameral meet as a weighted game or
a complete game, and show that the MSR index is immune to the bicameral meet paradox.
We discuss the computation of the MSR index using a linear integer program and the inverse
MSR problem of designing a weighted voting game with a given distribution of power.

Keywords: minimum integer sum representation; power indices; bicameral meet; rankings;
proportional design between shares and power

1 Introduction

Consider a simple majority voting game, in which two voters have 49 votes each, whereas a third
voter has 2 votes only. Let the weights of the voters represent their contributions to a common
cause, or ownership stakes in a joint equity arrangement. Examples of the latter type include
shareholder voting in corporations and country member voting in the multilateral institutions
of the Bretton Woods Accord. Simple majority rule stipulates that, in order for a coalition to
win, it must command at least 51 votes.

The voters have glossily unequal weights and yet are equally powerful because a coalition of
any two of them wins. Why would the larger voters contribute too much, relative to the power
they receive? Assuming integer weights and holding the voting weight of the smallest voter fixed
at 2, the larger voters would have an incentive to reduce their voting weights to 2. This is the
minimal contribution that preserves an equal distribution of power after lowering the quota to
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4. The sum of voting weights, or the joint stock, shrinks from 100 to 6. In fact, we may expect
a race to the bottom until the weights fall to 1 (quota 2, joint stock 3).1

We started from the game [51; 49, 49, 2] and ended with the game [2; 1, 1, 1]. This is the
minimum sum representation (MSR) of a game with three equally powerful voters. It turns out
that the share in the sum of voting weights of an MSR is a valid measure of power. We call
this new measure the ‘MSR index’. In the above games, the power vector reads (1/3, 1/3, 1/3).
Powers according to our new measure are thus proportional to voting weights in the MSR.

We show that the MSR index is a coherent measure of power. According to Freixas and
Gambarelli (1997), a measure is coherent if it: vanishes for powerless players, is invariant under
isomorphisms, leads to the measured power being shared among the voters, and is strictly mono-
tonic. The monotonicity is based on Isbell’s (1956) desirability relationship (see also, Taylor and
Zwicker 1999). In weighted voting games, strict Isbell monotonicity implies strict monotonic-
ity of power in voting weight. But Isbell monotonicity also applies to more general types of
complete simple games for which the desirability relationship is total. Weighed voting games
are a class of complete simple games. For weighted voting games, the Freixas and Gambarelli
coherency criteria are equivalent to the ‘minimal adequacy postulate’ by Felsenthal and Ma-
chover (1998) (p.222), plus the dominance criterion (Ibid., ch.7.6), which they find sufficiently
important to disqualify two existing power indices that violate it (Deegan and Packel (1978)
and Holler (1982)).

It is important to emphasize that the domain of application of the MSR index is confined to
weighted voting games. In this respect the MSR index is less general than the existing power
indices that can be computed for any simple voting game. It is, however, weighted voting games
that are relevant to the applied power measurement and institutional design. The MSR index
is ordinally equivalent to the Banzhaf, Shapley-Shubik and Johnston indices, so that all four
indices produce the same power ranking in any weighted voting game.

Further exploring the properties of the MSR index, we show that it is immune to the bi-
cameral meet paradox. A bicameral meet is a union of two voting games. Respecting bicameral
meet requires that the merging of two voting games not change the relative powers of voters,
who were in the same game prior to the merge. The quirk is that a bicameral meet of two
complete games may not be complete, and a bicameral meet of two weighted games may not be
weighted. We provide a characterization of simple voting games, in which these two properties
carry over from the constituent games to the union game.

The paper is structured as follows. Sections 2 and 3 recapitulate the theoretical foundations
of simple voting games and power indices, respectively. Sections 4 and 5 discuss the MSR,
formulate the MSR index and establish its coherency as a measure of power. The index is
uniquely determined and can be computed using an integer linear program. The inverse MSR
problem of designing a weighted voting game with a given distribution of power can be solved
with the same method used to compute the index. This stands in contrast to the existing
power indices, whose inverse problems are significantly more difficult than direct computations.
Section 6 illustrates the MSR index on two constituencies of the IMF and the German Bundestag
after the general election of 2009. Vulnerabilities to certain anomalies, commonly referred to
as voting paradoxes, are discussed in Section 7. In this section, we obtain the characterization
for bicameral meet games and use it to show that the MSR index respects the bicameral meet

1In a non-cooperative meta-game, in which players’ strategies are their voting weights and their payoff is voting
power, this is unlikely to be a stable equilibrium because each player would benefit from unilaterally increasing
her voting weight.
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postulate. In a symmetric weighted voting game, the power of a voting bloc according to the
MSR index equals the sum of individual powers of its members. The MSR index is thus neutral
with respect to aggregating powers in symmetric weighted voting games. This is different from
the Banzhaf and Shapley-Shubik indices, which can assign more or less than the sum of individual
powers to the bloc. Since a symmetric weighted voting game with a voting bloc is a particular
case of a game with an a priori union, we provide a definition of the MSR index for games with
a priori unions and discuss the computation of the MSR index in such games. The last section
offers concluding remarks.

2 Simple Voting Games

A simple voting game (SVG) is a collectionW of sets contained in the finite set N = {1, 2, . . . , n},
satisfying the following properties:

(i). N ∈ W;

(ii). ∅ /∈ W;

(iii). Whenever S ⊆ T ⊆ N and S ∈ W, then also T ∈ W;

We shall refer to N as the assembly of W. The members of N are the voters in W. A set of
voters, a subset of N , is called a coalition. The cardinal of a set of voters S, or the number of
voters in coalition S, is denoted by |S|.

Any member of W is a winning coalition. If S ⊆ N but S /∈ W, then S is a losing coalition.
A winning coalition is minimal if it has no proper winning subset. The set of winning coalitions
W, or the set of minimal winning coalitions Wm, completely characterizes the SVG.

A voter i is a vetoer if i ∈ S for all S ∈ Wm. A voter i is null if i /∈ S for every S ∈ Wm. A
vetoer i is a dictator if Wm = {{i}}. In this case, all players in N \ {i} are null. A voter i in an
SVG is called trivial if she is either a vetoer, or a null voter. A simple voting game comprising
trivial voters only is called a unanimity of a coalition game, and has a singleton Wm = {T} for
some ∅ ( T ⊆ N as the set of minimal winning coalitions.

An SVG is a weighted voting game (WSVG) if one can assign to each i ∈ N a nonnegative
real number wi, and fix a real positive number q, such that

W = {S ⊆ N : w(S) ≥ q}, where w(S) =
∑
i∈S

wi.

Here, wi is the voting weight of voter i, and q is the number of affirmative votes required for
a decision to be passed. A representation of a WSVG with a quota q and weights wi for every
i ∈ N is denoted by [q;w1, w2, . . . , wn], where n = |N | is the number of voters. Should the vector
of weights w = (w1, w2, . . . , wn) be specified, we may use the shorter notation [q;w] instead.

Two distinct representations of a WSVG are equivalent if they induce the same set W. For
example, [51; 49, 49, 2] ≡ [102; 98, 98, 4], sinceW = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} in both games.
This shows that the number of WSVG equivalent to a given WSVG is infinite, as rescaling the
weights and quota by the same factor preserves the set of winning coalitions.
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3 Coherent Power Measures

A power index is a mapping K that assigns to each SVG a vector in Rn+. A power index on a
subclass of SVGs, say S, is a mapping K that assigns to each game in S a vector in Rn+. For
the purposes of this paper, we consider power indices on the class of WSVGs only.

In addition to nonnegativity, Freixas and Gambarelli (1997) state the additional properties
any reasonable measure of power must fulfill as follows:

(i). Null voter : If i is a null voter in (N,W), then Ki(W) = 0;

(ii). Efficiency :
∑

i∈N Ki(W) = 1;

(iii). Invariance: Ki(W) = Kπ(i)(W) for every bijective map (isomorphism) π : N → N , such
that S ∈ W ⇔ π(S) ∈ W;

(iv). Strong monotonicity : if i �D j in (N,W) then Ki(W) > Kj(W).

The null voter property requires the index to vanish for powerless voters. Efficiency requires
voting powers to sum to unity. This normalization is appropriate when power justifies a claim on
a prize to be shared among the voters (P-power in Felsenthal and Machover (2004)). The more
powerful the voter, the larger the share she receives. Null voter and efficiency together imply
that a dictator receives the entire prize. Invariance says that any transformation that preserves
the set of winning coalitions must also preserve the distribution of power. A rescaling of quota
and weights in a weighted voting game should leave the distribution of power unchanged.

Monotonicity is formulated in terms of Isbell’s desirability relation. The notation %D denotes
a relation on N , such that i %D j, if S ∪ {j} ∈ W implies S ∪ {i} ∈ W for every S ⊆ N \ {i, j}.
Roughly speaking, adding voter i instead of voter j to any coalition S will have the same or
better effect on its decisiveness, making i a more desirable addition for the voters comprising S.

The game (N,W) is called complete (CSVG) if %D is a total (weak) order. Then:

i �D j if i %D j but not j %D i;

i ≈D j if i %D j and j %D i.

All WSVGs are CSVGs because wi ≥ wj implies i %D j. The class of complete simple games
is thus more general than the class of weighed voting games. For n ≥ 6 there exist complete
SVGs that are not WSVGs and for n ≥ 4 there exist SVGs that are not CSVGs.

Taylor and Pacelli (2008) offer a test of completeness. A simple game is complete if it is
swap robust, or if a one-for-one exchange of players between any two winning coalitions S and
T leaves at least one of the two coalitions winning. One of the players in the swap must belong
to S but not T , and the other must belong to T but not S.

For weighted voting games, the above coherency criteria are equivalent to ‘minimal adequacy
postulates’ for WSVGs by Felsenthal and Machover (1998), plus the strong dominance (Ibid.,
def.7.1.1 and ch.7.6). The Deegan-Packel index, the Holler index and the Nucleolus violate
strong monotonicity, although the Nucleolus η cannot reverse the order of the Isbell’s desirability
relation, i.e., i �D j and ηj < ηi are incompatible. The Banzhaf, Shapley-Shubik or Johnston
indices satisfy strong monotonicity. These three indices are ordinally equivalent in a large class
of games that contains all CSVGs (Freixas, Marciniak and Pons 2012).

4



4 The Minimum Sum Representation of a WSVG

It is well-known that any WSVG admits a representation with nonnegative integer weights and
positive integer quota. Let I(N,W) denote the unbounded set of integer representations for
(N,W). If [q;w] ∈ I(N,W), then [tq; tw] ∈ I(N,W) for any positive integer t. Geometrically,
the set I(N,W) is a discrete cone of integers in the (n+ 1)-dimensional set Nn+1.

A representation [q;w] of a WSVG (N,W) is called minimum if w′ ≥ w, i.e., w′i ≥ wi for
all i = 1, 2, . . . , n, for all representations [q′;w′] ∈ I(N,W). Let MI be the set of minimum
(integer) representations.

A representation [q;w] of a WSVG (N,W) has minimum sum if w′(N) ≥ w(N) for all
[q′;w′] ∈ I(N,W). Let sMI be the set of all minimum sum (integer) representations.

Henceforth, we omit the qualification ‘integer’, as we consider integer-weighted games only,
and use the shorter notation MI and sMI instead of MI(N,W) and sMI(N,W) whenever
there is no ambiguity about the game.

Some properties of minimum integer and minimum sum representations have been obtained
in Freixas and Molinero (2009) and Freixas and Molinero (2010b).

Proposition 4.1 Let (N,W) be a WSVG, and MI and sMI be the sets defined above.

(i). MI has at most one element;

(ii). sMI is never empty;

(iii). MI ⊆ sMI, where the equality arises, if and only if MI is a singleton.

Let [q;w] ∈ sMI be a representation for the WSVG (N,W), then:

(iv). q = a and q = b+ 1, where a = min
S∈W

w(S) and b = max
S/∈W

w(S);

(v).

wi = 0, if and only if i is a null voter;

wi = v, if i has veto, where v = w(N)− q + 1;

(vi). The greatest common divisor of {w1, . . . , wk} = 1, where {1, . . . , k} denotes the set of
non-null voters in N .

Freixas and Molinero (2009) proved MI = sMI for all WSVG with n < 8, which means that
the cone containing all representations of a WSVG with n < 8 has a vertex, and showed that
for n = 8 there exist 154 WSVGs with MI = ∅ and |sMI| = 2. Kurz (2012a) extended this
study for n = 9.
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4.1 Computation

The minimum sum representations of a WSVG (N,W), i.e., the elements that belong to sMI,
are the solutions of the integer linear program:

min
n∑
i=1

wi; (1)

w(S)− w(R) > 0 for all S ∈ W, R /∈ W;

wi ≥ 0 for all i ∈ N ;

wi ∈ Z for all i ∈ N.

Again, w(S) and w(R) denote the sum of weights of voters belonging to the coalitions S and R.
In a game with n voters, there will be 2n coalitions. The number of constraints in Problem (1)

is given by:
|W| · (2n − |W|) + n,

Consequently, the maximum number of constraints equals 22n−2 + n. This occurs when exactly
one half of all coalitions are winning. The number of effective constraints is likely to be lower, as
some of them may be redundant. Most linear programming solvers can remove redundant con-
straints without changing the feasible region of the problem. One way of identifying redundant
constraints in a linear system is discussed in Telgen (1983).

Appendix A illustrates the constraints for the game [51; 49, 49, 2]. Table A.1 lists all coalitions
of the game. Since exactly one half of the coalitions are winning, the corresponding linear integer
program will have the maximum number of constraints attainable in a game with three voters.
Table A.2 lists the constraints, marking the effective constraints with an asterisk. Discarding
ineffective constraints, the vector (1, 1, 1) can be discerned as the unique solution to the program.
The corresponding power vector is (1/3, 1/3, 1/3).

The above integer linear program involves a large number of constraints. There exist more
compact formulations of this program based on equivalent classes of subsets of winning coalitions
and losing coalitions, called shift-minimal winning coalitions and shift-maximal losing coalitions.
We refrain from discussing these special types of coalitions to avoid the addition of unnecessary
detail in Section 2. We refer the interested reader to Carreras and Freixas (1996) for definitions
of shift-minimal winning coalitions and shift-maximal losing coalitions. For an application of
the more compact integer linear program, see Freixas and Molinero (2010b).

Proposition 4.1 (ii) furnishes the existence of a solution to Problem (1). Yet the solution
may not be unique. If it is unique, it is the least element in the partial order of component-wise
comparison of the feasible solutions. Finding all solutions to an integer linear program may be
difficult in practice. Jung-Fa, Ming-Hua and Yi-Chung (2008) discuss finding multiple solutions
to general integer linear programs. Achterberg, Heinz and Koch (2008) propose a method for
finding all solutions to an integer linear program based on a search tree.

An example of a game with several minimum sum representations with the smallest n and
quota q is the WSVG with the two minimum sum representations:

[12; 7, 6, 6, 4, 4, 4, 3, 2] and [12; 7, 6, 6, 4, 4, 4, 2, 3].

In this example, 1 �D 2 ≈D 3 �D 4 ≈D 5 ≈D 6 �D 7 ≈D 8.
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5 The MSR as an Index of Voting Power

If the MSR of a game is unique, then the MSR index is the vector of voting shares in the MSR.
If the MSR is not unique, the index is given by the coordinate-wise average of the voting share
in all MSRs of a game. The existence of a solution to program (1) guarantees that the MSR
index of power is well-defined for WSVGs.

If sMI = MI, the MSR index is proportional to the weights of the representation lying on
the vertex of the cone of integer representations. If sMI 6= MI, the MSR index is proportional
to the average of the weights of the minimum sum integer representations. For instance, the
MSR index for the above WSVG reads:(

7

36
,

6

36
,

6

36
,

4

36
,

4

36
,

4

36
,
2.5

36
,
2.5

36

)
.

Proposition 5.1 The MSR index for WSVGs satisfies the following properties: null voter,
efficiency, invariance under isomorphisms and strong monotonicity.

Proof.

(i). Null voter: From Proposition 4.1 (v) it follows that wi = 0 for every representation with
minimal sum. Its average is thus zero, and Ki(W) = 0;

(ii). Efficiency: K is the average of efficient allocations, so it is efficient, too;

(iii). Invariance under isomorphisms: As the voting game is complete and weighted, any
two players are comparable using the desirability relation. Isomorphisms preserve equi-
desirable classes. An isomorphism of a complete game is an element of the group S(N1)×
· · · × S(Nt), where N1, . . . , Nt are the equi-desirable classes of the game and S(Ni) is the
symmetric group of the elements in Ni (e.g., Carreras and Freixas 2008). Thus, for an
isomorphism π in a complete game, π(i) = j implies i ≈D j. Then, assuming i ≈D j
and wi > wj for a representation in sMI, there exists another equivalent representation
in sMI, with w′i = wj , w

′
j = wi and the remaining weights unchanged. Consequently,

Ki(W) = Kj(W);

(iv). Strong monotonicity: If i �D j in W, then wi > wj for all representation in sMI. Thus,
Ki(W) > Kj(W);

�

Proposition 5.1 establishes the coherence of the MSR index as a measure of power, as well
as its ordinal equivalence to the Banzhaf, Shapley-Shubik and Johnston indices. The ordinal
equivalence follows because, as it was shown in Freixas et al. (2012), the three indices satisfy
null voter, invariance under isomorphisms and strong monotonicity, as the MSR index does. The
ordinal equivalence allows us to extend some results on rankings for the three existing indices
to the MSR index. One such result concerns the number of achievable hierarchies among the
players.

Every CSVG, and thus every WSVG, has associated with it a hierarchy of classes of players
for whom the equivalence relationship ≈D holds, where the classes are strictly ordered by the
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relationship %D. The number of achievable hierarchies in a WSVG with n voters is given by:2

2n−1 for n = 2;

2n−1 − 1 for n = 3;

2n−1 − 2 for n ≥ 4.

These numbers hold for the MSR index, as can be seen for n ≤ 4 from Table B.1 of Appendix B.
The table lists all possible raw power vectors for n ≤ 4, and all WSVGs with these power
vectors up to an isomorphism. The adjective ‘raw’ refers to an index prior to a normalization
by the sum of voting weights. A comparison to raw Banzhaf and Shapley-Shubik indices shows
that in games with n ≤ 4 players the MSR index achieves fewer power distributions than the
Shapley-Shubik index, which in turn achieves fewer power distributions than the Banzhaf index.

The enumeration of weighted voting games plays an important role in solving the inverse
problem of finding a weighted voting game with a given distribution of power. Leech (2003)
and Aziz, Paterson and Leech (2007) proposed two fixed-point iteration methods for obtaining
the inverse solution for the Banzhaf index. For a general method based on linear programs, see
Kurz (2012b).3

5.1 The inverse MSR problem

The inverse problem of a power index is the problem of designing a weighted voting game with
a given distribution of power. The practical significance of this lies in institutional design. In
a weighted voting game, the design is given by the voting weights and the voting rule, or the
number of affirmative votes required to pass a decision. In institutions, in which the number of
votes depends on the capital contributions of the voters to a purse of a given size, a voter wants
to know which distributions of voting weights confer the desired power or that voter’s expected
share of the purse. A prime example of such an institution is the corporation.

The formulation of the inverse problem for the MSR index is considerably simpler than the
formulation for the Banzhaf and Shapley-Shubik indices, but solving the inverse problem for the
MSR index still requires checking all possible voting rules (quotas), and verifying that the power
vector fulfills the desirability relation once a quota is fixed. The fact that power is proportional
to the weights in the MSR greatly simplifies the search for a solution to the inverse problem.

Consider a variant of the inverse problem, in which we are asked to guess a game with integer
weights, after being given the power vector and quota of that game. The given power vector
and quota are compatible, so that we can be sure a solution to the inverse problem exists. Since
there will be an infinite number of solutions, we will seek the MSR of the original game, or – if
not unique – the average of the MSRs of the original game, rather than the game itself.

Let (p1, . . . , pn) be the power vector and q the relative quota, where pi ≥ 0 for all i =
1, . . . , n,

∑n
i=1 pi = 1, and q ∈ (0.5, 1] as the relative quota. Consider the weighted voting

game [q; p1, . . . , pn]. The voting weights in this game are not integers but rationals confined to
a simplex. Plugging [q; p1, . . . , pn] in Problem (1) will produce an MSR of the original WSVG
as the solution, because the game [q; p1, . . . , pn] is equivalent to the original game and to the
MSR of the original game. If the game has several MSRs, plugging [q; p1, . . . , pn] in Problem
(1) will yield the average of all MSRs, which is also equivalent to the original game. Indeed, for

2For a proof, see Friedman, McGrath and Parker (2006). For other papers on hierarchies in SVGs, see Carreras
and Freixas (1996), Bean, Friedman and Parker (2008) and Freixas and Pons (2010).

3See, also, de Keijzer, Klos and Zhang (2010) and Alon and Edelman (2010).
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a given input [q; p1, . . . , pn], there exists a unique integer λ > 0, such that (λp1, λp2, . . . , λpn)
is the average of all MSRs of the solution. Since rescaling the weights and quota leaves the set
of winning coalitions unchanged, [λq;λp1, λp2, . . . , λpn] is the solution. As an example, consider
the power vector (

14

72
,
12

72
,
12

72
,

8

72
,

8

72
,

8

72
,

5

72
,

5

72

)
.

After multiplying the above power vector by λ = 36, we obtain (7, 6, 6, 4, 4, 4, 2.5, 2.5), which is
the average of the weights of the two MSRs for the game discussed in Section 4.

The difference between the above problem and the actual inverse problem is that in the
latter we are given the power vector but not the quota. If we know that (p1, . . . , pn) is a power
vector of a WSVG, then we also know that there are at most 2n − 1 candidates to represent a
game with this power vector. Candidates for the quota are:∑

i∈S
pi for all S ⊆ N, S 6= ∅.

If the WSVG obtained by choosing a given quota preserves the desirability relation, then it is a
solution to the inverse problem. Otherwise the quota should be discarded in favor of a different
one.

The next section provides examples of power distributions obtained using the MSR index,
and compares them to the widely-applied Banzhaf and Shapley-Shubik indices.

6 Numerical Examples

Example 1 (IMF). The first example applies the MSR index to the country voting in two
constituencies of the International Monetary Fund (IMF). The two constituencies are currently
led by Belgium and Mexico (as of the first half of 2012, subject to a biannual rotation scheme).4

We assume simple majority as the voting rule.

Table 1: Power distribution in the IMF Belgium-led constituency.

Country Weight MSR MSR Index Imp. Weight Banzhaf Shapley-Shubik

Austria 21880 13 0.149 18713 0.101 0.132
Belarus 4605 3 0.034 4318 0.027 0.026
Belgium 46793 31 0.356 44623 0.530 0.491
Czech Republic 10763 8 0.092 11515 0.067 0.060
Hungary 11125 9 0.103 12955 0.081 0.080
Kosovo 1331 2 0.023 2879 0.017 0.019
Luxembourg 4928 4 0.046 5758 0.032 0.034
Slovak Republic 5016 4 0.046 5758 0.032 0.034
Slovenia 3491 2 0.023 2879 0.017 0.019
Turkey 15299 11 0.126 15834 0.096 0.104

Gini Coef. 0.457 0.573 0.560

Simple majority quota: 62616 votes.

4For an comprehensive analysis of country voting in the International Monetary Fund, the World Bank and its
three regional equivalents in America, Africa and Asia using existing power indices, see Leech and Leech (2005)
and Strand (1999, 2001, 2003).

9



Tables 1 and 2 summarize the results. Compared to the Banzhaf and Shapley-Shubik indices,
the MSR index assigns less power to the largest player (Belgium) and more power to the smallest
players (Kosovo and Slovenia). The Gini coefficient confirms that voting power according to the
MSR index is less concentrated. In the sense of the sum of absolute deviations, the MSR power
vector is closer to the Shapley-Shubik index (0.27) than to the Banzhaf index (0.35).

The number of votes a country commands is determined by its contribution to the authorized
ordinary capital of the IMF. Using the voting powers obtained with the MSR index as a basis
for determining fair capital contributions leads to the implicit voting weights shown in the fifth
column of Table 1. It turns out that Austria, Belarus, Belgium and Slovenia contribute too
much relative to the voting power they receive, whereas all other countries contribute too little.

The power distribution the Mexican-led constituency is very uneven. The three larger mem-
bers share the power equally, whereas the smaller members are powerless. The power distribution
according to the MSR index is identical to those according to the other two indices.

Table 2: Power distribution in the IMF Mexico-led constituency.

Country Weight MSR MSR Index Banzhaf Shapley-Shubik

Costa Rica 2382 0 0 0 0
El Salvador 2454 0 0 0 0
Guatemala 2843 0 0 0 0
Honduras 2036 0 0 0 0
Mexico 36998 1 0.333 0.333 0.333
Nicaragua 2041 0 0 0 0
Spain 40975 1 0.333 0.333 0.333
Venezuela 27332 1 0.333 0.333 0.333

Simple majority quota: 58531 votes.

Example 2 (Bundestag). Our second example considers the distribution of parliamentary
seats in the German Bundestag after the general election of 2009. Popular methods for allocating
a fixed number of seats in way that best represents the shares of the popular vote obtained by
the parties include the D’Hondt formula, the Droop quota and the Largest Remainder Method.
The Bundestag currently uses the Sainte-Laguë method.

Table 3: German Bundestag election, 2009.

Party Popular Vote Seats MSR MSR Index Imp. Seats

CDU/CSU 14,655,004 239 3 0.333 207
SPD 9,988,843 146 2 0.222 138
FDP 6,313,023 93 2 0.222 138
The Left 5,153,884 76 1 0.111 69
Green 4,641,197 68 1 0.111 69

An alternative would be to allocate parliamentary seats according to the voting power im-
plied in the popular vote in a way that minimizes the total number of seats in the parliament
and, hence, also the monetary cost of indirect representation. This can be accomplished using
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the MSR index. Table 3 summarizes computations for the Bundestag after the general election
of 2009. The power distribution implied in the popular vote can be captured using just nine
seats, three of which go to the CDU/CSU as the party with the most popular votes. Note that
minimizing the cost of representation may also minimize its quality. There are good reasons for
having sizable parliaments, such as the number and complexity of issues and regional represen-
tation. So, if one wishes to adhere to a 622 seat Bundestag, the seat distribution implied in
voting power bestowed by the popular vote will be as in the rightmost column of Table 3.

7 Further Properties of the MSR index

One of the difficult questions in the empirical work is which index to use. The common criteria for
choosing an index include the existence of more or less compelling game-theoretical foundations
(Shapley-Shubik, Deegan-Packel), consistency with certain stochastic models of voting (Shapley-
Shubik, absolute Banzhaf), or immunity to certain voting paradoxes.

We already mentioned that the Deegan-Packel and Holler indices are not coherent measures
of power because they violate monotonicity. The absolute Banzhaf measure violates efficiency,
which makes it a dubious measure of P-power. This leaves the Banzhaf, Johnston and Shapley-
Shubik indices as reasonable measures of P-power. Felsenthal and Machover (1998) identify
three voting paradoxes that any reasonable measure of power should not be liable to. These
are the bloc, donation and bicameral meet paradoxes. The problem is that none of the existing
measures of power have all the required immunities (Table 4), leaving open the question of which
index to use.

Table 4: Properties of Power Indexes.

Index Null Eff. Invar. Str.Mon. Bloc Neut. Don. Bic.Meet

Shapley and Shubik (1954) X X X X X X
Banzhaf (1965) X X X X X
Johnston (1978) X X X X
Deegan and Packel (1978) X X X
Holler (1982) X X X
MSR X X X X X X

Respecting the bloc postulate means that if two voters or more voters form a bloc by adding
their votes, the power of the bloc should not be lower than the power of either voter alone. A
weaker version of the bloc postulate concerns symmetric games. In a symmetric weighted voting
game, each player commands an equal number of votes. The power of a voting bloc according
to the MSR index equals the sum of individual powers of its members, so that satisfying the
bloc postulate does not carry strategic implications. We call this property Neutrality. None of
the popular existing indices satisfy this property (Table 5).

Respecting donation means that if one voter gives some of her votes to another, the power
of the donor should not increase as a result. Felsenthal and Machover (1998) provide examples
in which the Banzhaf and Johnston indices display both bloc and donation paradoxes. Freixas
and Molinero (2010a) study the frequency of the occurrence of the donation paradox in weighted
games with a small number of players, providing examples for the Banzhaf and Johnston indices.

The MSR index is also liable to bloc and donation paradoxes. The Shapley-Shubik index
is immune to both bloc and donation paradoxes, but it does not satisfy the bicameral meet
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satisfied by the Banzhaf and MSR indexes.
An index of power respects bicameral meet if the ratio of powers of any two voters belonging

to the same assembly prior to a merge with a different assembly is preserved in the joint assembly.
This property is useful when measuring voting power of shareholders, because the relative powers
of shareholders comprising a minority voting assembly (represented by their joint holdings) carry
over to the grand voting assembly (represented by the total worth of the company).

To prove that the MSR index respects bicameral meet we first need to establish the conditions
under which a bicameral meet of two complete games is complete, and a bicameral meet of two
weighted games is weighted. This is accomplished in the next section.

Table 5: Bloc and Donation Paradoxes in games
[22;10,9,7,6,4,1] and [22;10,9,7,6,5,0].

Voter Weight MSR Index Shapley-Shubik Weight MSR Index Shapley-Shubik

1 10 0.280 0.300 10 0.308 0.317
2 9 0.240 0.250 9 0.231 0.233
3 7 0.200 0.217 7 0.231 0.233
4 6 0.160 0.167 6 0.154 0.150
5 4 0.080 0.050 5 0.077 0.067
6 1 0.040 0.017 0 0 0

Bloc Paradox: In the game [22;10,9,7,6,4,1], voter 5 gains power by forming a bloc
with voter 6 according to the Shapley-Shubik index, but loses power according to
the MSR index.
Donation Paradox: In the game [22;10,9,7,6,5,0], voter 5 loses power by donating one
vote to voter 6 according to the Shapley-Shubik index, but gains power according
to the MSR index.

7.1 Two characterizations for bicameral meet games

The bicameral meet of two SVGs (N1,W1) and (N2,W2) with disjoint assemblies is an SVG
such that N = N1 ∪N2 and W = {S ⊆ N : S = S1 ∪ S2, S1 ∈ W1, S2 ∈ W2}. The bicameral
meet postulate requires that if i and j are non-null voters in an SVG (N1,W1), then the ratio
of power of voter i to the power of voter j in the joint assembly N1 ∪N2 should be equal to the
ratio of their powers in the original game (N1,W1):

Ki(W1)

Kj(W1)
=
Ki(W)

Kj(W)
.

A special case of the bicameral meet postulate is the added blocker postulate, which says that
adding a vetoer to a WSVG should not change the ratio of powers of any two incumbent voters.

Felsenthal, Machover and Zwicker (1998) proved that the Banzhaf index satisfies bicameral
meet, while the Deegan-Packel, Johnston and Shapley-Shubik indices do not. A violation for
the Holler index can be obtained using their example for the Deegan-Packel index.

The bicameral meet of two complete games may not be complete, and the bicameral meet
of two weighted games may not be weighted. The next two theorems provide characterizations
for complete and weighted bicameral meets.
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Theorem 7.1 Let (N,W) be the bicameral meet of (Ni,Wi) for i = 1, 2. Then, (N,W) is a
complete game if and only if (Ni,Wi) for i = 1, 2 are complete games, and at least one of them
is a unanimity of a coalition game.

Proof.
(⇒) Assume that (N,W) is a complete game and that none of the two games (N,Wi) is a

unanimity of a coalition game. According to the definition of a unanimity of a coalition game,
there is a voter i ∈ N1, who is neither vetoer nor null in (N1,W1), and a voter j ∈ N2, who is
neither vetoer nor null in (N2,W2). This implies the existence of coalitions

S1, T1 with i ∈ S1 ∈ Wm
1 , i /∈ T1 ∈ Wm

1 ;

S2, T2 with j ∈ S2 ∈ Wm
2 , j /∈ T2 ∈ Wm

2 ,

such that S1 ∪ T2 and S2 ∪ T1 are both minimally winning in (N,W), but (S1 \ {i})∪ (T2 ∪ {j})
and (S2 \{j})∪(T1∪{i}) are both losing in (N,W). This shows that (N,W) is not swap robust,
and thus not complete. However, this contradicts the initial assumption.

Consequently, one of the two games (N,Wi) for i = 1, 2 is a unanimity game of a coalition.
Let (N2,W2) be such game. Then, Wm

2 = {T}. This game is complete because players in
T are vetoers in (N2,W2), and players in N2 \ T are nulls in (N2,W2). The completeness of
(N2,W2) follows from null players being dominated according to Isbell’s desirability relation by
veto players.

It remains to show that (N1,W1) is complete. Assume that i %D j in (N,W), with i, j ∈ N1.
We want to prove that i %D j in (N1,W1). Suppose, to the contrary, that there exists a coalition
S1 ⊆ N1 \ {i, j}, such that S1 ∪ {j} ∈ W1 but S1 ∪ {i} /∈ W1. Then, S1 ∪ {j} ∈ W1 implies
(S1 ∪ S2)∪ {j} ∈ W for all S2 ∈ W2, which implies (S1 ∪ S2)∪ {i} ∈ W since i %D j in (N,W).
Hence S1 ∪ {i} ∈ W1 is a contradiction.

(⇐) Assume, without any loss of generality, that (N2,W2) is the unanimity game of coalition
T for some ∅ ⊂ T ⊆ N2. Players in T have veto in (N2,W2), while players in N2 \ T are nulls
in (N2,W2). Since veto players dominate null players, (N2,W2) must be a complete game.

Assume, moreover, that (N1,W1) is a complete game with the following total (weak) order:
1 %D 2 %D · · · %D n1. Let N = {1, . . . , n1, n1 + 1, . . . , n1 + t, n1 + (t + 1), . . . , n1 + n2} with
n1 + n2 = n, so that j ∈ T if j = n1 + i for some 1 ≤ i ≤ t. Since N = N1 ∪N2 and

W = {S1 ∪ S2 : S1 ∈ W1, S2 ∈ W2},

players in T have veto in (N,W). Players in T therefore dominate all players in N . On the
contrary, players in N2 \ T are null in (N,W) and are therefore dominated by all players in N .
In game (N,W) we thus have

n1 + 1 ≈D · · · ≈D n1 + t %D 1 %D 2 %D · · · %D n1 %D n1 + (t+ 1) ≈D · · · ≈D n1 + n2.

Consequently, (N,W) is a complete game, with at least t players being the most desirable and
at least n2 − t being the least desirable in (N,W). �

Corollary 7.2 If (N,W) is a CSVG which is the bicameral meet of (N1,W1) and (N2,W2),
then either |Wm

1 | = 1 or |Wm
2 | = 1, and, therefore, |Wm| = |Wm

1 | · |Wm
2 |.

Note that Corollary 7.2 also applies to weighted games. Another direct consequence of
Theorem 7.1 is that if (N,W) is a complete game without veto players, then it cannot be the
bicameral meet of two SVG.
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Theorem 7.3 Let (N,W) be the bicameral meet of (Ni,Wi) i = 1, 2. Then, (N,W) is a weighted
game, if and only if (Ni,Wi) for i = 1, 2 are weighted games, of which one is a unanimity of a
coalition game.

Proof. (⇒) Assume that (N,W) is a weighted game. By Theorem 7.1, we only need to prove
that (N1,W1) is a weighted game, as [t; 1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0︸ ︷︷ ︸
n2−t

] is a weighted representation for the

unanimity of a coalition game T ⊆ N2, (N2,W2).
Let [q;w] ≡ [q;w1, . . . , wn1 , wn1+1, . . . , wn1+n2 ] be a weighted representation for (N,W). We

claim that
[q′;w′] ≡ [q −

∑
i∈T

wi;w1, . . . , wn1 ]

is a representation for (N1,W1). We need to prove that

S1 ∈ W1 ⇐⇒ w′(S1) ≥ q′.

This follows from the following two steps:

• If S1 ∈ W1, then S1 ∪ T ∈ W. This implies w(S1 ∪ T ) ≥ q, and, consequently, w′(S1) ≥
q −

∑
i∈T

wi = q′;

• If S1 /∈ W1, then S1 ∪N2 /∈ W. This implies w(S1 ∪N2) < q, and, consequently, w′(S1) ≤
w(S1 ∪N2)−

∑
i∈T

wi < q −
∑
i∈T

wi = q′.

(⇐) Let [t; 1, . . . , 1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n2−t

] be a weighted representation for (N2,W2) and [q;w1, . . . , wn1 ]

be a weighted representation for (N1,W1). Then we claim that

[q′′;w′′] ≡ [q + tv;w1, . . . , wn1 , v, . . . , v︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n2−t

],

where v = w(N1)− q+ 1 is a weighted representation for (N,W). Indeed, we need to prove that

S ∈ W ⇐⇒ w′′(S) ≥ q′′.

This follows from the following two steps:

• If S ∈ W, then S ∩N1 ∈ W1 and S ∩N2 ∈ W2, thus w′′(S ∩N1) ≥ q and w′′(S ∩N2) ≥ tv
since T ⊆ S, which implies w′′(S) = w′′(S ∩N1) + w′′(S ∩N2) ≥ q + tv = q′′;

• If S /∈ W, then either S ∩ N1 /∈ W1 or S ∩ N2 /∈ W2. Assume first S ∩ N1 /∈ W1, then
w′′(S∩N1) < q, which implies w′′(S) = w′′(S∩N1)+w′′(S∩N2) < q+tv = q′′. Assume now
S∩N2 /∈ W2, then w′′(S∩N2) ≤ (t−1)v, which implies w′′(S) = w′′(S∩N1)+w′′(S∩N2) ≤
w(N1)+(t−1)v = q+(t−1)v+(w(N1)−q) = q+(t−1)v+(v−1) = q+tv−1 < q+tv = q′′.

�

Theorem 7.3 implies that if (N,W) is a weighted voting game without veto players, then it
cannot be the bicameral meet of two simple voting games.
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7.2 The MSR index respects bicameral meet

To prove that the MSR index respects bicameral meet, we need the following lemma:

Lemma 7.4 Let (N,W) be the bicameral meet of the two weighted games (Ni,Wi) for i = 1, 2
where (N2,W2) is a unanimity of a coalition game. The elements of sMI(W1) and sMI(W)
are in bijective correspondence. Moreover, this one-to-one correspondence preserves weights.

Proof. Assume, without any loss of generality, that (N2,W2) has trivial voters only. Then,
(N2,W2) admits the weighted representation [t; 1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0︸ ︷︷ ︸
n2−t

] for some 1 ≤ t ≤ n2, which

is the unique element in sMI(W2). Let [q;w1, . . . , wn1 ] be an element of sMI(W1). Then we
claim that

[q + tv;w1, . . . , wn1 , v, . . . , v︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n2−t

],

where v = w(N1)− q + 1, is an element of sMI(W).
Assume, on the contrary, that the above representation does not belong to sMI(W). Then

we could decrease at least one weight in a manner that leaves the set of minimal winning
coalitions W unchanged. We now show that doing so produces a contradiction.

Subtracting one vote from any of the first n1 weights yields [q;w1, . . . , wn1 ] /∈ sMI(W1),
which is a contradiction.

Subtracting one vote from any of the middle t weights produces a contradiction with the
assumption of that voter having a veto in W2. Indeed, by Proposition 4.1 (iv) there exists
S ∈ Wm

1 , such that w(S) = q. In this case, S ∪N2 /∈ W, as w(S ∪N2) < q + tv.
If the quota q+ tv is decreased by one, then, according to Proposition 4.1 (v), the remaining

weights v must be decreased by one vote to preserve the minimum sum property. This implies
that the quota must be lowered to q+ tv− t (t ≥ 1). Consequently, by Proposition 4.1 (iv), the
quota for the initial weighted representation of game (N,W1) could be lowered to q − t. This
contradicts the existence of a losing coalition with weight q − 1 implied in Proposition 4.1 (iv).
�

The proof that the MSR index respects bicameral meet follows readily from the above lemma.
Since the weights in the bijective map established in Lemma 7.4 for non-null voters do not change,
we conclude that if i, j ∈ N1, then

Ki(W1)

Kj(W1)
=
Ki(W)

Kj(W)
.

The examples given in Felsenthal et al. (1998), showing that the Deegan-Packel, Johnston and
Shapley-Shubik indices do not satisfy the bicameral meet property, are examples of bicameral
meets in WSVGs. Thus, although these three indices are defined for more general SVGs, they
do not respect the bicameral meet property in WSVGs, whereas the MSR index does.

7.3 The MSR index is neutral for blocs in symmetric games

Consider a simple weighted voting game with n voters, each of whom has exactly one vote. The
decision rule is defined by a threshold number of votes, q. In this simple setting, any index that
respects the invariance and efficiency properties will ascribe 1/n to each voter. But now suppose
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that b voters form a voting bloc. What is the relationship between the power of the bloc and
the sum of the individual voting powers of its members?

Let us assume that the bloc does not command the required majority of votes, i.e., 1 <
b < q ≤ n− b. Under this assumption, Straffin (1980) proves that the Shapley-Shubik index of
the bloc equals b/(n − b + 1), which is greater than the sum of powers of the individual voters
b/n. It is clear from the integer linear program (1) that the weighted representation of the game
[q; b, 1, . . . , 1︸ ︷︷ ︸

n−b

] is minimum in integers, so that (b, 1, . . . , 1︸ ︷︷ ︸
n−b

) is the distribution of power according

to the MSR index for the game obtained after the formation of the bloc. Thus, the MSR index
fulfills the bloc postulate in its neutral form.

None of the other indices in Table 5 has this property. The Banzhaf index of the bloc reads

B(n, q, b)

B(n, q, b) + (n− b)A(n, q, b)
,

where B(n, q, b) and A(n, q, b) denote, respectively, the number of swings for the bloc and the
number of swings for a single member of the bloc in the game obtained after forming the bloc.
It is easy to show that

B(n, q, b) =
b−1∑
k=0

(
n− b

q − b+ k

)
and A(n, q, b) =

(
n− b− 1

q − 1

)
+

(
n− b− 1

q − b− 1

)
.

For n < 8, the power of the bloc is greater than the sum of individual powers of its members.
Yet, for example, for n ≥ 8, b = 2 and q = n − 2, the power of the bloc is smaller than 2/n,
the sum of powers of any two voters. This shows that the Banzhaf index neither satisfies the
bloc postulate, nor the neutrality satisfied by the MSR index. We leave the computations for
the other three indices to the reader.

7.4 The MSR index for games with a priori unions

The bloc postulate motivate comparisons of power distributions in two games: the initial game
and the one obtained after the formation of a bloc. More general games with voting blocs can
be obtained by partitioning the set N of players into a priori unions T = {T1, . . . , Tm}, where
the coalitions (unions) Tk are pairwise disjoint, and their union is N . These unions are seen as
prior agreements among a group of players. The central questions in the context of games with
voting blocs are: (i) what is the power of the bloc, and (ii) how to share the spoils among the
bloc members.5

Given a partition T, the quotient game V =W/T with players set M = {1, . . . ,m}, assigns
to each bloc the value of the MSR index in the quotient game, i.e., V ≡ [q;w(T1), . . . , w(Tm)]
where w(S) =

∑
i∈S wi. We compute the MSR index for this game and divide the value obtained

for the bloc among its members proportionally to the value that these players receive according
to the MSR index in the initial game.

While providing an axiomatization of this definition is beyond the scope of this paper, we note
that from a computational viewpoint this definition requires solving two integer linear programs
instead of one: the program associated to the original game and the program associated to the

5There exists an extensive literature on coalitional values for games with a priori unions based on the indices
considered in this paper. See, Owen (1977) for a seminal contribution on games with a priori and, e.g., Alonso-
Meijide and Fiestras-Janeiro (2002) and Pulido and Sánchez-Soriano (2009) for more recent work.

16



quotient game. To give a simple example, consider the game [3; 2, 1, 1]. If T = {{1, 2}, {3}},
then player 3 becomes null, whereas players 1 and 2 share the spoils in proportion 2 : 1, yielding
the power vector (2/3, 1/3, 0). If T = {{1}, {2, 3}}, then all players are equally powerful in the
quotient game, so that they get 1/2 each. As 2 and 3 receive 1/4 each for the MSR index in the
initial game, the 1/2 assigned in the quotient game is divided equally between them. The final
distribution of power is (1/2, 1/4, 1/4).

8 Concluding Remarks

Briefly summarizing our contribution, we have developed a new index of voting power based
on the Minimum Sum Representation (MSR) of a weighted voting game. We have established
that the MSR index, computed as the voter share in the sum of weights of the minimum sum
representation, is a coherent measure of power. In addition, the MSR index is immune to the
bicameral meet paradox.

The MSR is an interesting object in its own right. It offers a redesign of the original game,
in which power becomes proportional to voting weight. The observation that power is not
proportional to weight in general, or that the distribution of votes reveals little about the
distribution of power, has been one of the main reasons for developing power indices in the
past. Of course, the total sum of weights in a minimum sum representation would usually be
different than in the original game, in which case a rescaling of the quota and weights would be
necessary in order to restore the original sum of weights. However, that would not affect the
distribution of power. The sum of the rescaled weights may be larger than the original sum, but
the discrepancy can be kept at a minimum.

The above properties suggest the MSR representation is an optimal design for weighted
voting games, in which power is proportional to weight. The drawback is that computing the
MSR and the MSR index of power requires solving a large-scale integer linear program, and
finding all solutions to that problem, if several exist. In this case, the index is given by a
coordinate-by-coordinate average of power vectors in all MSR games. Finding all solutions to
an integer linear program may require special techniques, but a solution always exists.

The inverse problem of a power index is central to designing voting institutions with a
given distribution of voting power. Solving the above problem for the MSR index is as easy
as computing the index, because the inverse problem is solved with the same method used to
compute the index. This stands in stark contrast to the existing power indices, whose inverse
problems are significantly more difficult than direct computations. The inverse problem arises
in institutional design. A potentially interesting application of the MSR index is the problem of
apportioning parliamentary seats after a general election in a way what minimizes the number
of seats in the parliament and the resulting cost of indirect representation. Here we assume that
the cost of representation is proportional to the total number of seats, which is minimized by a
minimum sum representation of the game.

It is evident that in any WSVG the number of permutations in which a player is pivotal in
the raw Shapley-Shubik index is greater than the number of voting outcomes in which the player
is critical in the raw Banzhaf index. We conjecture that the largest possible weight a player can
have in a minimum sum representation is lower than the corresponding raw Banzhaf value, and,
hence, also lower than the corresponding raw Shapley-Shubik value. If true, this would imply
that Banzhaf and Shapley-Shubik indices do not minimize the cost of representation.

In terms of the conventional properties of power indexes, the MSR index is quite similar
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to the Banzhaf index. However, the MSR offers two substantial advantages over any known
measure of voting power, including the popular Banzhaf index and the Shapley-Shubik index.
It offers way of redistributing a fixed number of total votes so that the power ascribed to a voter
by the MSR becomes proportional to the share of the number of votes she commands. This
proportionality of voting power and weight is attractive, both in theoretical and applied work.

Proportionality makes the MSR index an ideal measure of P-power in institutions, in which
the votes are distributed to the voter based on their contribution to a fixed purse. P-power
reflects the extent of a voter’s control of the distribution of a fixed purse – the ultimate outcome
of voting, measured by that voter’s expected share in the fixed purse (Felsenthal and Machover
2004). If a voter’s expected share of spoils coincides with the voters contribution to the fixed
purse, an equilibrium emerges in which voters will not want to redistribute votes. This leads to
a stable institutional design of vote-for-money institutions such as the corporation.

We conclude the paper with a remark on an alternative power index based on the MSR
and an open problem. A different measure of power can be developed by taking the average of
weight vectors for minimal sum integer weighted representations preserving types. This means
that we only take into consideration weighted representations in which voters equivalent in
terms of the desirability relation have the equal weights. In Freixas and Molinero (2010b) it
is proved that n = 9 is the smallest number of voters needed to find examples of WVSGs
without a unique minimal sum representation preserving types. For instance, the example given
in Section 5, which only has 8 voters without a unique minimal sum representation in integers,
has a unique minimal sum representation in integers preserving types. However, if n > 8 one
can find examples, such as the one given in Freixas and Molinero (2010b), which admits

[37; 14, 11, 7, 5, 5, 5, 3, 2, 2] and [37; 14, 12, 6, 5, 5, 5, 3, 2, 2]

as minimum sum integer representations preserving types. In this example, the average of
weights is (

14

54
,
11.5

54
,
6.5

54
,

5

54
,

5

54
,

5

54
,

3

54
,

2

54
,

2

54

)
,

which also provides a suitable alternative measure with similar properties to those studied in
this paper for the MSR index. Note, however, that for n < 8 the value of this alternative index
coincides with the MSR index developed in this paper.

An open problem is how to extend the MSR index from the domain of weighted voting games
to the domain of simple voting games. We surmise that several alternative ways of accomplishing
this might be available, but at present none of them seems simple and convincing. Perhaps some
notion of dimension for simple voting games, such as those introduced in Freixas and Marciniak
(2009), may offer a useful starting point.
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A A linear integer program for the WSVG: [51; 49, 49, 2]

Table A.1: Coalitions in WSVG: [51;49,49,2].

Coalition Voter 1 Voter 2 Voter 3 Status

1 1 1 1 Win
2 1 1 0 Win
3 1 0 1 Win
4 1 0 0 Lose
5 0 1 1 Win
6 0 1 0 Lose
7 0 0 1 Lose
8 0 0 0 Lose

1 denotes a Yes vote, 0 a No vote.

Table A.2: Constraints for WSVG: [51;49,49,2].

1 w1 + w2 > 0
2 w1 + w3 > 0
3 w2 + w3 > 0
4 w1 + w2 + w3 > 0
5 w2 > 0 ∗
6 w3 > 0 ∗
7 −w1 + w2 + w3 > 0 ∗
8 w2 + w3 > 0
9 w1 > 0 ∗
10 w1 − w2 + w3 > 0 ∗
11 w3 > 0
12 w1 + w3 > 0
13 w1 + w2 − w3 > 0 ∗
14 w1 > 0
15 w2 > 0
16 w1 + w2 > 0
17 w1 ≥ 0
18 w2 ≥ 0
19 w3 ≥ 0

∗ denotes effective constraints.
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B WSVGs with fewer than 5 voters

Table B.1: List of raw indices for all WVSGs with n ≤ 4 voters.

n ≤ 4 Wm WVG MSR Banzhaf Shapley-Shubik

(1)-a 1 [1;1,0,0,0] 1:0:0:0 8:0:0:0 24:0:0:0
(2) 1;2 [1;1,1,0,0] 1:1:0:0 4:4:0:0 12:12:0:0

12 [2;1,1,0,0] − − −
(4) 1;2;3 [1;1,1,1,0] 1:1:1:0 2:2:2:0 8:8:8:0

123 [3;1,1,1,0] − − −
(6)-a 12;13;23 [2;1,1,1,0] − 4:4:4:0 −
(7) 1;2;3;4 [1;1,1,1,1] 1:1:1:1 1:1:1:1 6:6:6:6

1234 [4;1,1,1,1] − − −
(9) 12;13;14;23;24;34 [2;1,1,1,1] − 3:3:3:3 −

123;124;134;234 [3;1,1,1,1] − − −
(11) 12;13 [3;2,1,1,0] 2:1:1:0 6:2:2:0 16:4:4:0

1;23 [2;2,1,1,0] − − −
(13) 123;124;134 [4;2,1,1,1] 2:1:1:1 4:2:2:2 12:4:4:4

1;23;24;34 [2;2,1,1,1] − − −
(15)-a 12;13;14;234 [3;2,1,1,1] − 6:2:2:2 −
(16) 12;13;14;23;24 [3;2,2,1,1] 2:2:1:1 4:4:2:2 8:8:4:4

12;134;234 [4;2,2,1,1] − − −
(18) 123;124 [5;2,2,1,1] − 3:3:1:1 10:10:2:2

1;2;34 [2;2,2,1,1] − − −
(20) 12;13;14 [4;3,1,1,1] 3:1:1:1 7:1:1:1 18:2:2:2

1;234 [3;3,1,1,1] − − −
(22) 1;23;24 [3;3,2,1,1] 3:2:1:1 5:3:1:1 14:6:2:2

12;134 [5;3,2,1,1] − − −
(24) 12;13;234 [4;3,2,2,1] 3:2:2:1 5:3:3:1 10:6:6:2

12;13;234 [5;3,2,2,1] − − −

The adjective ‘raw’ refers to an index prior to normalization by the sum
of voting weights. Non-numbered games have quota q′ = w(N)− q + 1,
where q is the quota of the preceding game. If q′ = q, then the game is
auto-dual.
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