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Abstract

Two-tier voting systems are prone to majority inversions, a situation in which the outcome
of an election is not backed by a majority of popular vote. We study the inversion probability
in a model with two candidates, three states and uniformly distributed fractions of supporters
for each candidate. We show that the inversion probability in a two-tier voting system with
three states eventually decreases with a majority threshold in the states and increases with
the inequality in the size distribution of the states.
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1 Introduction

Two-candidate elections conducted using two-tier electoral procedures are prone to majority
inversions. Inversions occur when the electoral majority in the top tier contradicts the popular
vote in the bottom tier. The result is that the outcome of an election does not represent the
will of a majority of voters. Such a situation is illustrated for three equally-sized states in
Figure 1 under simple majority rule. In the example, ‘blue’ wins the election by an electoral
majority that is not backed by a simple majority of the popular vote. A majority inversion
occurs, undermining the democratic legitimacy of the outcome.

Two-tier voting systems exemplified by the U.S. Electoral College and the British-type single-
member-district majority systems have been the subject of formal and empirical study. Looking
at the U.S. presidential election for a two-way election between the Democratic and the Repub-
lican candidates, several majority inversions have occurred in the past. For a recent empirical
estimate of the probability of majority inversion in a U.S. presidential election, see Geruso,
Spears and Talesara (2019).1 The earliest formal analysis of inversion probability in a two-tier
model with an odd number of equally-sized states was conducted by May (1948).2 His model
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1Miller (2012) documents inversions in legislative elections in the Westminster parliamentary systems.
2For an alternative stochastic model, see Zaigraev and Kaniovski (2010) and the follow-up by Di Cecco (2011).
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Figure 1: Example of majority inversion with three states.
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Under simple majority rule, blue wins the election by
a 2/3 majority of the electoral votes (top tier), despite
having only a 140/300 minority of the popular vote (bot-
tom tier).

assumes a discrete uniform distribution for the number of supporters of a certain candidate in
each state, which became a continuous uniform distribution in the limiting case of infinitely
many voters. The final feature of the model by May is the traditional majority threshold of 1/2,
which is usually referred to as a simple majority. May has shown inversion probability in the
case of three states to be equal to 1/8 under simple majority with equally-sized states. We relax
this assumption of simple majority by a general majority threshold α ∈ (0, 1) and relax the
assumption of equally-sized states. A majority threshold in excess of 1/2 should be interpreted
as a qualified majority required to change the status quo. For example, passing a motion may
require 2/3 of all votes, rather than the usual 1/2. Failing to achieve the required number of
votes, the motion is rejected and the status quo remains.

For analytical tractability, we confine to the case of three states. The behavior of two-tier
voting systems with three states under the May stochastic model of voting have been previously
studied in Kaniovski and Zaigraev (2018), who show that the inversion probability increases with
the size-discrepancy between the states. The inversion probability is a Schur-convex function
of the vector of states’ population weights. For an exposition of the theory of majorization
and Schur-convexity, see Marshall, Olkin and Arnold (2011), whose formal concepts provide a
foundation of the theory of inequality measurement by Yitzhaki and Schechtman (2013).

Briefly anticipating the main result, we find a trade-off between the majority threshold α and
the inequality in the size distribution of states. The inversion probability in a two-tier voting
system with three states decreases for sufficiently high α and increases with the inequality of
the size distribution. This result is based on a complete analytical analysis of the inversion
probability as a function of the population weights of the three states and α.

2 The result

In the baseline model, the voters face two alternatives, A and B. Let the number of states be
n, where n is odd, and n ≥ 3. The variations of the standard two-tier voting models studied in
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this paper rest on four assumptions. For each state i = 1, . . . , n:

A.1 wi > 0 the population weights, such that
∑n

i=1wi = 1;

A.2 vi > 0 the voting weights, such that
∑n

i=1 vi = 1 and max{vi} < 1
2 , whereby no state

carries sufficient weight to dictate the outcome of the election;

A.3 ai ∼ U(0, 1) the share of voters in state i who support A, where the uniformly distributed
random variables a1, . . . , an are independent;

A.4 α ∈ (0, 1) the majority threshold, i.e. the share of votes required to pass a motion in the
bottom tier; while in the top tier the simple majority is needed.

The inversion probability is the sum of two probabilities

P

 n∑
i=1

wiai < α ,
n∑
j=1

vj1{aj>α} >
1

2

+ P

 n∑
i=1

wiai > α ,
n∑
j=1

vj1{aj>α} <
1

2

 . (1)

The above formula illustrates the two mutually exclusive prerequisites for an inversion – either
A loses the bottom tier and wins the top one, or the other way around. In terms of an absolute
number of votes, if the total population equals the total turnout m, then the total number of
votes cast in state i equals mwi, of which mwiai favor A. The total number of votes for A thus
becomes m

∑n
i=1wiai, and A loses the bottom tier, if m

∑n
i=1wiai < mα. Yet, A wins the top

tier, if
∑n

j=1 vj1{aj>α} > 1/2. This situation is illustrated for n = 3, α = 1/2, wi = vi = 1/3 in
Figure 1 (A is ‘blue’). The value α = 1/2 represents a simple majority.

Let xi = ai − α ∼ U(−α, 1− α) for i = 1, . . . , n. Then, the inversion probability becomes:

P (α,w1, . . . , wn, v1, . . . , vn) = P

 n∑
i=1

wixi < 0,

n∑
j=1

vj1{xj>0} >
1

2


+ P

 n∑
i=1

wixi > 0,

n∑
j=1

vj1{xj>0} <
1

2

 . (2)

Evidently, if xi ∼ U(−α, 1 − α), then −xi ∼ U(−(1 − α), α) for i = 1, . . . , n. Multiplying the
first inequalities under both probabilities by −1 and substituting xi by −xi, one can see that

P (α,w1, . . . , wn, v1, . . . , vn) = P (1− α,w1, . . . , wn, v1, . . . , vn). (3)

It is therefore sufficient to consider the case α ≥ 1
2 only. In what follows, we assume n = 3. For

n = 3, the assumption max{vi} < 1
2 made in [A.2] implies that the inversion probability does

not depend on the vector of voting weights (v1, v2, v3). Under this assumption, the outcomes in
exactly two of the three states must contradict the overall outcome for an inversion to occur,
and this holds regardless of (v1, v2, v3). Without any loss of generality, the population weights
are ordered in a descending order, i.e. w1 ≥ w2 ≥ w3.

Theorem 1. The inversion probability assumes the following expressions:
1) w3 ≥ 1− α :

P (·) =
3

2
(1− α)2(1 + α)− (1− α)3

2

(
1

w1
+

1

w2
+

1

w3

)
+

(1− α)3(w3
1 + w3

2 + w3
3)

6w1w2w3
;
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2) w1 ≥ w2 ≥ 1− α > w3, w3α < w2(1− α) :

P (·) = 1− α+
(1− α)(αw2 − 1 + 2α− 2α2)

2w1
+

(1− α)(αw1 − 1 + 2α− 2α2)

2w2

+
[(1− α)3 + 3α3]w2

3

6w1w2
;

3) w1 ≥ w2 ≥ 1− α > w3, w3α ≥ w1(1− α) :

P (·) = (1− α)(1− 2α2) +
(1− α)(2α− 1− αw2)

2w1
+

(1− α)(2α− 1− αw1)

2w2

+
2(1− α)3w2

1

6w2w3
+

2(1− α)3w2
2

6w1w3
+

[(1− α)3 − α3]w2
3

6w1w2
;

4) w1 ≥ w2 ≥ 1− α > w3, w2(1− α) ≤ w3α < w1(1− α) :

P (·) = (1− α)2(1 + α) +
(1− α)(2α− 1− αw2)

2w1
+

(1− α)(2α− 1− 2α2 + αw1)

2w2

+
(1− α)3w2

2

3w1w3
+

(1− 3α+ 3α2)w2
3

6w1w2
;

5) w1 ≥ 1− α > w2 ≥ w3, w3α ≥ w1(1− α) :

P (·) =
1

2
(1− α)(1 + α− 3α2) +

(1− α)3w2
1

2w2w3
+

[2(1− α)3 − α3]w2
2

6w1w3
+

[2(1− α)3 − α3]w2
3

6w1w2

+
α(1− α)(w3α− w1(1− α))

2w2
+
α(1− α)(w2α− w1(1− α))

2w3
+

(1− α)(α2 + α− 1)

2w1
;

6) w1 ≥ 1− α > w2 ≥ w3, w3α < w2(1− α), w2α > w1(1− α) :

P (·) =
1

2
(1− α)(1 + α− α2) +

(1− α)[α(1 + 2w2)− 1− α2]

2w1
+

(1− α)3w2
1

6w2w3
− α3w2

2

6w1w3

+
α(1− α)(w2α− w1(1− α))

2w3
+
α(1− α)(w1(1− α)− w3α)

2w2
+

[2(1− α)3 + 3α3]w2
3

6w1w2
;

7) w1 ≥ 1− α > w2 ≥ w3, w3α < w2(1− α), w2α ≤ w1(1− α), w1 ≤ α :

P (·) =
1

2
(1− α)(1 + α− α2) +

(1− α)[α(1 + 2w2)− 1− α2]

2w1
+

[2(1− α)3 + 3α3]w2
3

6w1w2

+
α(1− α)((1− α)w1 − αw3)

2w2
+
α(1− α)((1− α)w1 − αw2)

2w3
− (1− α)3w2

1

6w2w3
+

α3w2
2

6w1w3
;

8) w1 ≥ 1− α > w2 ≥ w3, w3α < w2(1− α), w2α ≤ w1(1− α), w1 > α :

P (·) =
1

2
+

2α(1− α)(1 + w2)− 1

2w1
+

(1− 3α+ 3α2)w2
3

3w1w2
;

9) w1 ≥ 1− α > w2 ≥ w3, w2(1− α) ≤ w3α < w1(1− α), w2α ≤ w1(1− α), w1 ≤ α :

P (·) =
1

2
(1− α)(1 + α− 3α2)− (1− α)(1− α− α2)

2w1
+
α(1− α)((1− α)w1 − αw3)

2w2

+
α(1− α)((1− α)w1 − αw2)

2w3
− (1− α)3w2

1

6w2w3
+

[2(1− α)3 + α3]w2
2

6w1w3
+

[2(1− α)3 + α3]w2
3

6w1w2
;
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10) w1 ≥ 1− α > w2 ≥ w3, w2(1− α) ≤ w3α < w1(1− α), w2α ≤ w1(1− α), w1 > α :

P (·) =
1

2
(1− 2α2 + 2α3)− 1− 2α+ 2α3

2w1
+

(1− α)3w2
2

3w1w3
+

(1− α)3w2
3

3w1w2
;

11) w1 ≥ 1− α > w2 ≥ w3, w2(1− α) ≤ w3α < w1(1− α) < w2α :

P (·) =
1

2
(1− α)(1 + α− 3α2)− (1− α)(1− α− α2)

2w1
+

[2(1− α)3 + α3])w2
3

6w1w2
+

(1− α)3w2
1

6w2w3

+
α(1− α)(w2α− w1(1− α))

2w3
+

[2(1− α)3 − α3]w2
2

6w1w3
+
α(1− α)(w1(1− α)− w3α)

2w2
;

12) w1 < 1− α, w3α ≥ w1(1− α) :

P (·) = −3

2
α(1− α)(2α− 1) +

α(1− α)(2α− 1)

2

(
1

w1
+

1

w2
+

1

w3

)
+

[3(1− α)3 − α3](w3
1 + w3

2 + w3
3)

6w1w2w3
;

13) w1 < 1− α, w3α < w2(1− α), w2α > w1(1− α) :

P (·) = −α(1− α)(2α− 1)

2
+
α(1− α)(2α− 1)

2w3
+

[(1− α)3 − α3]w2
1

6w2w3
+

[(1− α)3 − α3]w2
2

6w1w3

+
(1− 3α+ 3α2)w2

3

2w1w2
+
α(1− α)(w2 − w3)

2w1
+
α(1− α)(w1 − w3)

2w2
;

14) w1 < 1− α, w3α < w2(1− α), w2α ≤ w1(1− α) :

P (·) =
α(1− α)

2

(
w2 − w3

w1
+
w1 − w3

w2
+
w1 − w2

w3

)
+

(1− 3α+ 3α2)(−w3
1 + w3

2 + 3w3
3)

6w1w2w3
;

15) w1 < 1− α, w2(1− α) ≤ w3α < w1(1− α), w2α ≤ w1(1− α) :

P (·) = −1

2
α(1− α)(2α− 1) +

α(1− α)(2α− 1)

2w1
+
α(1− α)(w1 − w3)

2w2
+
α(1− α)(w1 − w2)

2w3

− (1− 3α+ 3α2)w2
1

6w2w3
+

[3(1− α)3 + α3]w2
2

6w1w3
+

[3(1− α)3 + α3]w2
3

6w1w2
;

16) w1 < 1− α, w2(1− α) ≤ w3α < w1(1− α) < w2α :

P (·) = −α(1− α)(2α− 1) +
α(1− α)(2α− 1)

2w1
+
α(1− α)(2α− 1)

2w3
+
α(1− α)(w1 − w3)

2w2

+
[(1− α)3 − α3]w2

1

6w2w3
+

[3(1− α)3 − α3]w2
2

6w1w3
+

[3(1− α)3 + α3]w2
3

6w1w2
.

3 Summary

The implications of Theorem 1 are illustrated in Figure 2. The inequality of the population
weights increases along the abscissa (left panel). This inequality can be summarized using a
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Gini coefficient, a popular measure of inequality that assumes a particularly simple form in the
case of three weights, such that w1 + w2 + w3 = 1:

G(w1, w2, w3) =
2(w1 − w3)

3
,

taking the minimal value of 0 for w1 = w2 = w3 = 1/3, and the maximal value of 2/3 for w1 = 1
and w2 = w3 = 0. The inversion probability tends to α(1−α), as G(·) tends to 2/3. The second
parameter that changes in the scenarios from left to right is the majority threshold α, starting
from 1/2 and tending to 1 (right panel).

Turning to the inversion probability, we can formulate the following conclusions:

• Fixing the majority threshold α = 1/2 and increasing the disparity of population weights
increases the inversion probability (left panel, black line). This finding confirms the main
result in Kaniovski and Zaigraev (2018).

• Turning to the right panel of Figure 2, we obtain the following corollary for the case of
equal population weights (right panel, black line):

Corollary 1.

P

(
α,

1

3
,
1

3
,
1

3

)
=

{
3
2α(1− α)(2α− 1)− 1

2(2α− 1)3 + (1− α)3 if α ∈ [12 ,
2
3),

3(1− α)2(2α− 1) + 1
2(1− α)3 if α ∈ [23 , 1).

When α increases from 1
2 to 1, P (α, 13 ,

1
3 ,

1
3) increases from 1

8 to 17
128 (for α = 5

8) and then
decreases from 17

128 to 0.

• It is easy to see that for α = 1/2, the two summands in the formula for the inversion
probability are equal. In general, these summands will not be equal. The first one will be
larger than the second one for small Gini coefficients, whereas the converse may be true
for large Gini coefficients.

• When the population weights are unequal but fixed (right panel), increasing the majority
threshold α decreases the inversion probability. However, the inversion probability as a
function of α is not strictly decreasing in general, possibly achieving an interior maximum
for moderate weight discrepancies, i.e. when the Gini coefficient is small.

• In general, there exists a trade-off between the majority threshold and the inequality
in the population weights. The inversion probability in a two-tier voting system with
three states increases with the discrepancy in the size distribution of states and decreases
for sufficiently high majority thresholds. This implies the existence of a combination of
population weights and a majority threshold, such that the inversion probability equals
that under the assumptions of the May model. May has shown the inversion probability
to be equal to 1/8 under simple majority rule (α = 1/2) with three equally-sized states
(w1 = w2 = w3), as is verified by Corollary 1.

Acknowledgment: We would like to thank an anonymous reviewer for useful comments and
suggestions.

6



Figure 2: Inequality in population weights, majority threshold and the inversion probability.
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The left panel shows how the inversion probability varies for five values of α when
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