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Abstract

This paper characterizes the limit values of the probability of majority inversion when the
number of voters tends to infinity, assuming a binomial model specific to each state, states of
different population sizes and arbitrary voting quotas in both stages of the voting procedure.
The main asymptotic theorem provides the limit values for most parametrizations of the
model. A prominent special case in which the limit cannot be determined using the theorem
is the classical binomial model. To address this well-known special case, we provide an exact
expression for the inversion probability that applies to any parametrizations of the model.
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1 Introduction

In a two-stage election, voters apportioned among constituencies (states) determine the overall
outcome of the election only indirectly. The following analysis is limited to the case of two-way
or binary voting, where each voter casts his or her vote in favor of one of the two alternatives.
In the first stage, a majority in each state is determined. In the second stage, the alternative
supported by a majority of the states wins the election. A majority inversion occurs when the
majority of the states in the second stage contradicts a nationwide majority of the votes in the
first stage. The phenomenon of majority inversion attracts considerable attention in the political
science literature and in the theory of voting, as the prospect of majority inversion undermines
the democratic legitimacy of an election outcome.

To illustrate the phenomenon of majority inversion, consider the example of three states in
Figure 1.1 The votes are unweighted and the collective decision rule is simple majority. A total
turnout of 300 voters is evenly distributed among the three states. Blue wins the election with
a majority of states, even though Red would win a hypothetical direct nationwide vote, as the
Blue faction totaling 140 votes is smaller then the Red faction totaling 160 votes.

Figure 1: Majority inversion with three states
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Blue wins the election by a 2/3 majority of
states, while receiving only 140 of 300 votes.
This leads to a majority inversion, because
Blue is not backed by a nationwide majority.

The probability of majority inversion in an idealized voting model depends on the voting
procedure and the stochastic model that determines the voters’ choice between the two alterna-
tives. The two stochastic settings dominate the theoretical literature: the Impartial Culture (IC)
and the Impartial Anonymous Culture (IAC). The IC setting relies on what we call the classical
binomial model of voting. In this model, each vote is equally likely to support or oppose an alter-
native on the ballot, and all votes are independent. The model implies the same level of support
for the two alternatives. The probability of majority inversion under the classical binomial model
has been studied, for example, in Feix, Lepelley, Merlin and Rouet (2004) and Lepelley, Merlin
and Rouet (2011). The main conceptual difference between the IC and the IAC is that the lat-
ter admits different levels of support, provided that all conceivable levels of support are equally
likely. The level of support is expressed by an absolute number of supporters, which becomes
a fraction of supporters asymptotically, as in the pioneering asymptotic analysis by May (1948)
and, more recently, in Feix et al. (2004) and Lepelley et al. (2011). The underlying stochastic

1This figure is borrowed from Zaigraev and Kaniovski (2020).
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model assumes that each vote has an equal probability of being in favor of an alternative, and
that this probability is drawn from the uniform distribution on a unit interval. Having assigned
the common probability of an affirmative vote, voters cast their votes independently. The model
behind the IAC is a special case of a more general compound beta-binomial model, because the
continuous uniform distribution from which the common probability parameter is drawn is a
special case of a more general beta distribution. Drawing a common probability parameter for
the uniform distribution introduces a positive correlation of 1/3 between the affirmative votes,
even though the votes are independent, conditioned on the common parameter. The recent
paper by De Mouzon, Laurent, Le Breton and Lepelley (2020) shows that the two settings can
be combined to obtain an even richer setting in which the IAC assumption holds within each
state, but any two votes from different states remain independent, and investigate the bounds
on the probability of inversion in this setting. Three simplifying assumptions common to all of
the above studies are i) states of equal population size, ii) simple majority rule in the first stage
of the two-stage voting procedure, and iii) unweighted votes in the second stage. Each of these
assumptions greatly simplifies the combinatorial aspect of the probability calculations.

The IC and IAC dichotomy is rooted in the literature on voting power, where it serves
as a probabilistic foundation for the Penrose-Banzhaf and the Shapley-Shubik measures of
power (Straffin 1977). According to Morriss (2002) and Felsenthal and Machover (2004), a
power measure should reflect a priori voting power, or power granted by a set of decision-
making rules, rather than the preferences or the behavior of the voters.2 This perspective favors
simple stochastic models that should be agnostic and neutral with respect to implied voting
behavior. The stochastic model considered in this paper introduces a minimal departure from
an overly restrictive interpretation of the a priori perspective embodied by the classical bino-
mial model. It does so by allowing voters from different states to have different probabilities of
supporting the alternative or candidate on the ballot.

In the recent theoretical literature on the probability of majority inversions, exact calcu-
lations and estimates of the inversion probability under the two alternative settings often go
hand in hand, not least due to the similarity of the analytical methods used to perform them.
Yet the IC setting is often considered too contrived and consequently less interesting than the
IAC setting because the underlying classical binomial model is extremely rigid and essentially
assumes that every voter in every state tosses a fair coin. In this paper we show that asymptotic
estimates of the inversion probability can be performed for a richer binomial setting in which
different binomial models are assumed for different states. This brings the proposed binomial
setting closer to the IAC setting, the difference being that in the former different probability
parameters are assumed for each state, whereas in the IAC these parameters are drawn from a
uniform distribution. Other generalizations pursued in this paper include relaxing the assump-
tion that states have the same population size and that the decision rule is a simple majority.
The present framework thus assumes a binomial model specific to each state, where states can
differ in size and the collective decision rule allows for an arbitrary voting quota in both stages
of the two-stage voting procedure.

In the next section, we outline the scope of this paper in terms of the voting procedure and
the stochastic voting model considered in it. Before proceeding with the main asymptotic result,
we pause to state some nonasymptotic results for the inversion probability in Section 3, which

2For a debate on the role of preferences in the measurement of voting power, the reader is referred to Napel
and Widgrén (2004) and the critique by Braham and Holler (2005a), as well as the reply by Napel and Widgrén
(2005) and the rejoinder by Braham and Holler (2005b).
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will help to frame the asymptotic analysis in Section 4. A detailed proof of the main theorem
can be found in Appendix A. The final section briefly summarizes the main findings.

2 The model

2.1 The voting procedure

The voting procedure is defined by the number of states, the number of voters in each state, the
voting weights and voting quotas. We make the following assumptions:

A.1 the number of states s is fixed, the number of voters in each state is n1, . . . , ns and their
overall number is N =

∑s
i=1 ni;

A.2 in the asymptotic analysis, the total number of voters tends to infinity, N → ∞, such that
the population shares of the states converge to constant values: n1/N → c1, . . . , ns/N →
cs, where ci ∈ [0, 1] for all i and

∑s
i=1 ci = 1;

A.3 the votes in both stages of the voting procedure are not weighted;

A.4 the voting quota in the first stage is given by α ∈ (0, 1), whereas the voting quota in the
second stage is given by β ∈ (0, 1);

A.5 sβ, Nα and niα for all i = 1, . . . , s are not integers;

A.6 we do not distinguish between turnout and population, thus ignoring the possibility that
not every resident of a state is eligible to vote and that some eligible voters may abstain.

Let us briefly discuss each of the above assumptions. Assumptions [A.1] and [A.2] convey
the asymptotic nature of our analysis. The paper investigates the limiting behavior of the
inversion probability, which will be defined shortly, when the population distributed among a
fixed number of states tends to infinity so that the proportions of states in the total population
stabilize. The limit population shares are not necessarily equal. Assumptions [A.3] and [A.6]
are fairly common to the existing theoretical studies of two-stage voting models. Assumption
[A.6] equates turnout and population. This simplification is permissible if turnout is treated as
exogenous, allowing us to use the terms “number of voters”, “voter turnout” and “population”
interchangeably. Assumption [A.4] allows us to see the effect of arbitrary quotas on the inversion
probability. We differentiate between the quotas in the first and the second stages of the voting
procedure, making the analysis fully general with respect to the voting rule. The value α = 0.5
(β = 0.5) implies a simple majority and α > 0.5 (β > 0.5) implies a qualified majority in the first
(second) stage. Most existing theoretical studies assume simple majority rule. In the case of a
qualified majority, the quota can be interpreted as the level of support needed to bring about
a change in the status quo, such as the adoption of a policy or a constitutional amendment in
a nationwide referendum. Assumption [A.5] is a common technical assumption that rules out
ties in both stages of the voting procedure. This assumption is not particularly restrictive in an
asymptotic analysis, but it removes the need to provide a tie-breaking rule.

Note that U.S. presidential elections do not exactly follow the above model. First, they are
not two-way elections because there are usually more than two candidates running for office and
not all candidates run in all states. Nonetheless, most theoretical and empirical models hold U.S.
presidential elections to be what they have essentially always been: a contest between Democrats
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and Republicans, i.e., a binary election. Regarding the assumption of unweighted votes [A.3],
note that real two-stage procedures can feature weighted votes in the second stage, with the
weights typically reflecting the size of the population in each state, as is the case with the U.S.
Electoral College. The assumption of weighted votes precludes an analytical analysis of the
voting model for a large number of states, due to the resulting combinatorial complexity. This is
the reason why estimates of the inversion probability and calculations of voting power for general
weighted voting models rely on numerical methods. Explicit nonasymptotic results for several
weighting schemes in the case of three states can be found in Lepelley, Merlin, Rouet and Vidu
(2014), Kaniovski and Zaigraev (2018) and Zaigraev and Kaniovski (2020). A recent example
of a numerical analysis of different weighting schemes in the context of inversion probability can
be found in Feix, Lepelley, Merlin, Rouet and Vidu (2021). Their numerical analysis includes
several stochastic voting models and weighting schemes, while maintaining simple majority rule
as the universal decision rule. Empirical models of the U.S. presidential elections can be found
in Katz, Gelman and King (2004), Miller (2012), who also documents inversions elsewhere
around the world, and Geruso, Spears and Talesara (2019). Despite its apparent simplifications,
the idealized formal model of two-stage voting, such as the one described above, has attracted
considerable attention in the theory of voting because it allows for the study of the phenomenon
of majority inversion in an analytically tractable framework.

2.2 The binomial model

The stochastic model assumes that each voter either supports or opposes the alternative on the
ballot. Let n+

i ∈ [0, ni] be the number of proponents and n−
i = ni−n+

i the number of opponents
in state i, then

A.7 all votes in the country are stochastically independent binary random variables;

A.8 the number of proponents n+
i follows a binomial distribution B(ni, pi), whose probability

pi ∈ (0, 1) is specific to the state i.

Assumption [A.8] specifies the probability distribution of the sizes of factions n+
i ∼ B(ni, pi)

and n−
i ∼ B(ni, 1− pi) as factions who support the same alternative in a given state. The total

sizes of the two factions N+ =
∑s

i=1 n
+
i and N− =

∑s
i=1 n

−
i comprise the total population

N = N− +N+. At the level of individual votes, [A.7] and [A.8] are equivalent to all affirmative
votes in state i having the same probability and all votes in the country being independent. The
assumption of states having different probabilities pi generalizes the classical binomial model of
voting with p = 0.5 assumed for each state.

2.3 Probability of majority inversion

The probability of majority inversion is the focus of this paper. Majority inversions occur when
the nationwide majority in the first stage does not match the majority of states in the second
stage. Let P1 be the probability that proponents have a nationwide qualified majority of votes
but not a qualified majority of states, and P2 be the probability that proponents do not have
a nationwide qualified majority of votes but have a qualified majority of states. Since the two
scenarios are mutually exclusive events, the inversion probability is equal to the sum P = P1+P2,
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where

P1 = P (N+ > Nα, at least s− ⌊sβ⌋ of {n+
i − niα} are negative),

P2 = P (N+ < Nα, at least ⌊sβ⌋+ 1 of {n+
i − niα} are positive).

Here, ⌊·⌋ denotes the integer part of the argument (floor function).
The main result allows us to determine the limit value of the inversion probability for most,

but not all, parametrizations. A parametrization of an election scenario comprises: a vector of
limit population shares of the states c = (c1, . . . , cs), a vector of binomial probability parameters
p = (p1, . . . , ps) and a pair of voting quotas α, β ∈ (0, 1). The main discriminatory quantity
with respect to the limit value

lim
N→∞

P (p, α, β)

is the scalar product ⟨c,p⟩, leading to two principal cases ⟨c,p⟩ = α and ⟨c,p⟩ ̸= α. The
first case is an knife-edge case corresponding to a perfect split of popular support for the two
alternatives on the ballot, while the second case is an generic case covering a richer variety
of voting scenarios and model parametrizations. The asymptotic theorem provides a complete
characterization of the limit values for the generic case ⟨c,p⟩ ≠ α.

For the special case ⟨c,p⟩ = α, the asymptotic theorem can only confirm that the limit value
is positive, provided that pi = α for all i, or all ci are smaller than 1. Exact limit values of the
inversion probability for ⟨c,p⟩ = α have so far only been established for the classical binomial
model (p1, . . . , ps = 0.5), states of equal population size (n1, . . . , ns = n) and simple majority
rules (α, β = 0.5). For this setting, Feix et al. (2004) provide the exact limit values for s = 3, 4, 5,
as well as a numerically simulated limit value for s > 5. In a follow-up paper, Lepelley et al.
(2011) present an approximate expression for the limit value of the inversion probability when
n and s are large, retaining the assumption of equal population size and simple majority rules.
The main idea behind the approximation in Lepelley et al. (2011) is that for independently and
identically distributed votes the distribution of a normalized margin of victory in each state
tends to a normal law. The limit value for the case of infinitely many states approximated by
simulation in Feix et al. (2004) has been confirmed analytically by Kikuchi (2016), who also
provides the expression:

1

2
− 1

π
· arctan

(√
2

π − 2

)
≈ 0.2059524.

The above limit value is again confirmed numerically in Feix et al. (2021) for up to s = 50,
who also relax the assumption of equally-sized states and study the effect of different weight-
ing schemes on the probability of majority inversion, while preserving simple majority rules.
The bottom line from these studies, however, is that the knife-edge case ⟨c,p⟩ = α does not
appear to be amenable to analytic methods when the states differ in population size, even for
unweighted voting and simple majority rules. For a small number of voters and states the in-
version probability for unweighted votes can be calculated using an exact formula provided in
the next section.

3 Nonasymptotic probability of majority inversion

For a pair of integers a, b, let
(
a
b

)
= a!/[b!(a− b)!] be the binomial coefficient, if a ⩾ b ⩾ 0, and(

a
b

)
= 0, otherwise. The following additive decomposition of the inversion probability P (p, α, β)
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can be useful for obtaining theoretical results and in computations:

P (p, α, β) = P1(p, α, β) + P2(p, α, β) =
s−1∑

k=s−⌊sβ⌋

∑
P1(i1, . . . , ik) +

s−1∑
k=⌊sβ⌋+1

∑
P2(i1, . . . , ik),

(1)
where for a fixed k each inner sum has

(
s
k

)
summands and

P1(i1, . . . , ik) = P
(
N+ > Nα, n+

i1
< ni1α, . . . , n

+
ik

< nikα, n
+
ik+1

> nik+1
α, . . . , n+

is
> nisα

)
,

P2(i1, . . . , ik) = P
(
N+ < Nα, n+

i1
> ni1α, . . . , n

+
ik

> nikα, n
+
ik+1

< nik+1
α, . . . , n+

is
< nisα

)
.

In P1, 1 ⩽ i1 < i2 < · · · < ik ⩽ s indicate the states in which opponents win, while in P2 they
indicate the states in which proponents win. The number of summands in P1 does not decrease
with β, while the number of summands in P2 does not increase with β. Since all summands are
non-negative, P1(p, α, β) is non-decreasing in β, whereas P2(p, α, β) is non-increasing in β and
vanishes for β > s−1

s . For β > s−1
s , we thus have

P (p, α, β) = P
(
N+ > Nα

)
−

s∏
i=1

P
(
n+
i > niα

)
.

The above formula states that if β is sufficiently high, the probability P2 vanishes, while P1

and thus the inverse probability is equal to the probability that proponents win in the first stage
of the election, minus the probability that proponents win in each state.

The next expression for P (p, α, β) follows directly from [A.7] and [A.8]:

Exact Formula. The probability of majority inversion P (p, α, β) equals the sum of two terms:

P1(p, α, β) =
s−1∑

k=s−⌊sβ⌋

t∗(k)∑
t=⌊Nα⌋+1

∑
{ki}∈At,k

s∏
j=1

(
nj

kj

)
p
kj
j (1− pj)

nj−kj ,

P2(p, α, β) =

s−1∑
k=⌊sβ⌋+1

⌊Nα⌋∑
t=t∗(k)

∑
{ki}∈A′

t,k

s∏
j=1

(
nj

kj

)
p
kj
j (1− pj)

nj−kj ,

where

At,k = {k1 + k2 + · · ·+ ks = t, k integers in [0, niα), s− k integers in (niα, ni]},
A′

t,k = {k1 + k2 + · · ·+ ks = t, k integers in (niα, ni], s− k integers in [0, niα)},

and, for n1 ⩽ n2 ⩽ · · · ⩽ ns,

t∗(k) = ⌊n1α⌋+ · · ·+ ⌊nkα⌋+ nk+1 + · · ·+ ns,

t∗(k) = ⌊n1α⌋+ · · ·+ ⌊nkα⌋+ k.

The complexity of computing the inversion probability using the above formula results from
the need to determine all elements of the sets At,k and A′

t,k as the integers lying on the hyper-
planes defined by k1 + k2 + · · · + ks = t. The summation bounds t∗(k) and t∗(k) reduce the
number of summands in P1(p, α, β) and P2(p, α, β) by omitting those values of {ki} for which
inversions cannot occur.

For β = 0.5, the expression for the inversion probability possesses the following symmetry:
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Corollary 1. P1(p, α, 0.5) = P2(1s − p, 1 − α, 0.5) and P2(p, α, 0.5) = P1(1s − p, 1 − α, 0.5)
and, consequently, P (p, α, 0.5) = P (1s − p, 1− α, 0.5), where 1s is a unit vector of length s.

Indeed, if n+
i has the distribution B(ni, pi), then ni − n+

i has the distribution B(ni, 1− pi).
To prove P2(p, α, 0.5) = P1(1s − p, 1− α, 0.5), note that

P2(p, α, 0.5) = P (N+ < Nα, at least (s+ 1)/2 of {n+
i − niα} are positive),

= P (N+ −N < Nα−N, at least (s+ 1)/2 of {n+
i − ni + ni(1− α)} are positive),

= P (N −N+ > N(1− α), at least (s+ 1)/2 of {(ni − n+
i )− ni(1− α)} are negative),

= P1(1s − p, 1− α, 0.5).

The equality P1(p, α, 0.5) = P2(1s − p, 1− α, 0.5) can be proven in a similar manner.
The above symmetry can reduce the computational complexity of the inversion probability,

especially in the case of the classical binomial model, where P (0.5 · 1s, 0.5, 0.5) = 2P1(0.5 ·
1s, 0.5, 0.5) = 2P2(0.5 · 1s, 0.5, 0.5). It can be further reduced by assuming that all states have
the same number of voters.

Corollary 2. Let n be the population size of each state. For n+
i ∼ B(n, 0.5) for all i = 1, . . . , s

and α, β = 0.5, we have

P (0.5 · 1s, 0.5, 0.5) = 21−sn
s−1∑

k=(s+1)/2

(
s

k

) sn−k(n+1)/2∑
t=(sn+1)/2

∑
{ki}∈At,k

(
n

k1

)(
n

k2

)
· . . . ·

(
n

ks

)
,

where

At,k = {k1 + · · ·+ ks = t, the first k integers in [0, (n− 1)/2], s− k integers in [(n+ 1)/2, n]}.

Figure 2 illustrates the inversion probability given in Corollary 2. The probability appears
to converge as n → ∞, where n = N/s, for a fixed s (left panel), for s → ∞ for a fixed
n, and for n → ∞ and s → ∞ (right panel). The scenario n → ∞ for a fixed s is the most
relevant of the three asymptotic scenarios because it can serve as an approximation of real-world
electoral systems with a large electorate residing in a given number of states. The computational
complexity precludes the practical application of the exact formula unless the number of states
and, especially, the number of voters are unrealistically small. This motivates the following
asymptotic analysis, the goal of which is to derive practical approximations to the inversion
probability for a wide range of model parametrizations. In the next section we analyze the set of
feasible limit values for the inversion probability under a more general binomial model in which
p is specific to each state and the states can differ in population size.

4 Asymptotic probability of majority inversion

Let ci be the limit population share of state i in the total population, i = 1, . . . , s, such that∑s
i=1 ci = 1. The limit shares need not be equal and can include the borderline case of a single

state absorbing the entire population. Next, we introduce m, the vector of election margins in
each state:

Definition. For a vector m with elements mi = α − pi, i = 1, . . . , s, denote the number of
negative, zero and positive elements in m by m−, m0 and m+, respectively.
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Figure 2: Inversion probability for equally-sized states
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The figure illustrates the inversion probability under the classical binomial model, simple majority rule and states
of equal population size n given in Corollary 2. The probability appears to converge as n → ∞ for a fixed number
of states s, for s → ∞ for a fixed n, as well as for n → ∞ and s → ∞.

Since we are dealing with a partition of m, m− +m0 +m+ = s, where s is the number of
elements in m, or the number of states. The vector of margins will play a prominent role in
the following analysis. Following the logic of the model, we will say that the election outcome
in state i is close if the i’th element of m is equal to 0, that is pi = α. We will call such states
close states and the other states partisan states.

Asymptotic Theorem. For the limit of the probability of inversion it holds that:

a) if ⟨c,p⟩ < α, then

lim
N→∞

P (p, α, β) =

{
2−m0∑s−⌊sβ⌋−1−m+

k=0

(
m0

k

)
, for 1 ⩽ m+ ⩽ s− ⌊sβ⌋ − 1

0, for s− ⌊sβ⌋ ⩽ m+ ⩽ s;
(2)

b) if ⟨c,p⟩ > α, then

lim
N→∞

P (p, α, β) =

{
2−m0∑⌊sβ⌋−m−

k=0

(
m0

k

)
, for 1 ⩽ m− ⩽ ⌊sβ⌋

0, for ⌊sβ⌋+ 1 ⩽ m− ⩽ s;
(3)

c) if ⟨c,p⟩ = α, then the limit is positive, unless m ̸= 0s, where 0s denotes a zero vector of
length s, and ci = 1 for some i, in which case the limit can be 0.

A proof of the theorem is given in Appendix A.
An immediate consequence of the above theorem is the following result:

Corollary 3. limN→∞ P (p, α, β) = 0 for α < min{pi} or α > max{pi}.

Choosing a first-stage quota α outside of the range of pi’s leads to an asymptotic impossibility
of majority inversion. Consequently, the inversion probability tends to zero if α → 1.

9



4.1 Limit values for ⟨c,p⟩ ≠ α

The Asymptotic Theorem gives the limit of the inversion probability for all cases, except for the
knife-edge case of ⟨c,p⟩ = α. Let us discuss the generic case ⟨c,p⟩ ̸= α, which is the focus of
this paper. Determining the limit in this case requires checking several conditions. The first step
checks if the inversion probability asymptotically vanishes. Depending on whether ⟨c,p⟩ < α or
⟨c,p⟩ > α, this occurs if m+ ⩾ s − ⌊sβ⌋ or m− ⩾ ⌊sβ⌋ + 1. In view of the definition of m as
a vector with elements α − pi, this happens because the nationwide majority and the majority
of states agree. For all other parametrizations, the inversion probability converges to a positive
value given by either (2) or (3). This value can be found by plugging m0 and, depending on
whether ⟨c,p⟩ < α or ⟨c,p⟩ > α, either m+ or m−. For β = 0.5, plugging m+ or m− yields the
same set of feasible limit values.

Table 1: Feasible limit values for s = 3, 5, β = 0.5 and ⟨c,p⟩ < α.

s = 3 s = 5

m0
m+

1 2 3
m0

m+

1 2 3 4 5

0 1 0 0 0 1 1 0 0 0
1 1/2 0 1 1 1/2 0 0
2 1/4 2 3/4 1/4 0

3 1/2 1/8
4 5/16

The limit values can be collected in a table of size s×s, whose entries depend on the number
of states s and the voting quota β in the second stage of the voting procedure. Table 1 shows
the limit values for s = 3, 5 and β = 0.5. Similarly, Table 2 shows the limit values for s = 9
and β = 0.5. We compute the entries in Tables 1 and 2 by plugging the values of m0 and
m+ into the asymptotic formula (2), which corresponds to the case ⟨c,p⟩ < α. The tables for
the case ⟨c,p⟩ > α can be obtained by plugging the values of m0 and m− into the asymptotic
formula (3), yielding the same entries since β = 0.5. Table 3 shows the effect of setting β = 0.75
on the set of feasible limit values for s = 9. Since β ̸= 0.5, the set of feasible limit values will
differ depending on whether ⟨c,p⟩ < α or ⟨c,p⟩ > α, leading to two sub-tables.

The fact that the asymptotic theorem can be applied to any parametrization for any number
of states makes it difficult to systematize all possibilities. To gain insight into the dispersion of
feasible limit values under a variety of parametrizations, we created a complete set of tables for
an odd number of states ranging from s = 3 to s = 101 and simple majority rule in the second
stage of the voting procedure β = 0.5, collecting the absolute frequencies of the limit values in
ten intervals.

The resulting absolute frequencies are presented in Appendix B. A comparison of the values
found in Tables 1-2 with the corresponding rows of the frequency table in the appendix shows
that the frequencies double. For example, the right side of Table 1 for s = 5 contains 1/8 as
the sole limit belonging to the range (0.1, 0.2], but the corresponding entry in the second (data)
row of the frequency table reports two limits in this range. This happens due to the existence
of two symmetric cases when β = 0.5, only one of which (⟨c,p⟩ < α) is shown in Tables 1-2. We
added the cases in which the asymptotic inversion probability takes the value of 0 and 1 to the
first and the last column of the frequency table, respectively.
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Table 2: Feasible limit values for s = 9, β = 0.5 and ⟨c,p⟩ < α.

m0
m+

1 2 3 4 5 6 7 8 9

0 1 1 1 1 0 0 0 0 0
1 1 1 1 1/2 0 0 0 0
2 1 1 3/4 1/4 0 0 0
3 1 7/8 1/2 1/8 0 0
4 15/16 11/16 5/16 1/16 0
5 13/16 1/2 3/16 1/32
6 21/32 11/32 7/64
7 1/2 29/128
8 93/256

Table 3: Feasible limit values for s = 9 and β = 0.75.

⟨c,p⟩ < α

m0
m+

1 2 3 4 5 6 7 8 9

0 1 1 0 0 0 0 0 0 0
1 1 1/2 0 0 0 0 0 0
2 3/4 1/4 0 0 0 0 0
3 1/2 1/8 0 0 0 0
4 5/16 1/16 0 0 0
5 3/16 1/32 0 0
6 7/64 1/64 0
7 1/16 1/128
8 9/256

⟨c,p⟩ > α

m0
m−

1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1/2 0 0
2 1 1 1 1 3/4 1/4 0
3 1 1 1 7/8 1/2 1/8
4 1 1 15/16 11/16 5/16
5 1 31/32 13/16 1/2
6 63/64 57/64 21/32
7 15/16 99/128
8 219/256

The general formula for the frequency of boundary and interior cases of the asymptotic
inversion probability is provided by the following corollary. Let L be the set of all feasible limits,
including their multiples, for a given s and β. In other words, L is the set of all entries in a table.
For example, in the case s = 3 and β = 0.5, the set L = {0, 0, 0, 0, 0, 0, 1/4, 1/4, 1/2, 1/2, 1, 1}.
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Half of the elements of L can be found in Table 1, the other half being identical for β = 0.5. We
obtain the following corollary of Asymptotic Theorem:

Corollary 4. For ⟨c,p⟩ ≠ α, the frequency of feasible limit values l equals

#{l ∈ L, such that l = 0} =
(
(s− ⌊sβ⌋)2 + (⌊sβ⌋+ 1)2 + s+ 1

)
/2,

#{l ∈ L, such that 0 < l < 1} = 2(⌊sβ⌋+ 1)(s− ⌊sβ⌋)− s− 1,

#{l ∈ L, such that l = 1} =
(
(s− ⌊sβ⌋)2 + (⌊sβ⌋+ 1)2 − s− 1

)
/2,

where # denotes the cardinality of a set.

For β = 0.5, the three frequencies simplify to (s+1)(s+3)/4, (s2−1)/2 and (s−1)(s+1)/4,
respectively. The validity of the above corollary for β = 0.5 can be checked using Tables 1-2 or,
more directly, using the frequency table supplied in Appendix B. For β = 0.75, the resulting
frequencies should be compared to those in Tables 3.

The absolute frequencies in Appendix B show that the number of feasible limit values in-
creases with the number of states s in all ranges. The frequencies of the boundary limit values
of 0 and 1 tend to accumulate fast with s, followed by the cases of limit values close to the bound-
aries. To a lesser extent, this is also true for limit values close to 0.5. We conclude that, at least
for the baseline case of simple majority rule β = 0.5 in the second stage of the voting procedure,
nontrivial limit values remain a relevant phenomenon as s increases. For β > (s− 1)/s, it holds
that

#{l ∈ L, such that l = 0} = s(s+ 1)/2 + 1,

#{l ∈ L, such that 0 < l < 1} = s− 1,

#{l ∈ L, such that l = 1} = s(s− 1)/2.

Since the total number of possible limit values is equal to s(s + 1), we can consider the
relative frequencies of each of the three types of limit values by dividing the corresponding
absolute frequencies in Corollary 4 by s(s + 1). Simple calculations show that for β = 0.5 and
s → ∞, the relative frequency of each of the two boundary limit values tends to 1/4, while the
relative frequency of the intermediate limit values tends to 1/2. For β > (s− 1)/s and s → ∞,
the relative frequency of each boundary limit value tends to 1/2, but the relative frequency
of the intermediate limit values vanishes. In general, for a fixed β and s → ∞, the relative
frequency of each boundary limit value becomes 1/2 − β(1 − β) and the relative frequency of
the intermediate limit values become 2β(1− β).

To round up the discussion, note that in the general case ⟨c,p⟩ ̸= α, the absence of close
states is a sufficient condition for a limit value of 0 or 1. A necessary and sufficient condition
for the limit value to be different from 0 or 1 is furnished by a pair of inequalities m− ⩽ ⌊sβ⌋
and m+ ⩽ s − ⌊sβ⌋ − 1. If all states have a common p, the inversion probability vanishes
asymptotically. This result does not depend on the shares, since the condition ⟨c,p⟩ ̸= α
simplifies to p ̸= α in view of

∑s
i=1 ci = 1.

4.2 Example of a parametrization for nine states

Let us apply Table 2 to a particular parametrization in the case of nine states (s = 9) and simple
majority rules α, β = 0.5 in both stages of the voting procedure. The results are collected in
Table 4.
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Table 4: Example of a parametrization for s = 9.

State 1 2 3 4 5 6 7 8 9

Asymptotic shares c 0.05 0.05 0.05 0.1 0.1 0.15 0.15 0.15 0.2
Probabilities p 0.5 0.2 0.5 0.3 0.4 0.9 0.3 0.5 0.7
Margins m 0.0 0.3 0.0 0.2 0.1 -0.4 0.2 0.0 -0.2
m− = 2 ✓ ✓
m0 = 3 ✓ ✓ ✓
m+ = 4 ✓ ✓ ✓ ✓

In this example, ⟨c,p⟩ = 0.525, so that ⟨c,p⟩ > α (α = 0.5). The inversion probability
is positive, as m− = 2 is smaller than (s + 1)/2 = 5. The number of close states is given by
m0 = 3. Equation (3) yields the limit value of 7/8 (see Table 2). Let us now slightly change
the parametrization by lowering the probability for the fifth state from p5 = 0.4 to p5 = 0.1.
In this case ⟨c,p⟩ = 0.495, so that ⟨c,p⟩ < α. To verify whether the inversion probability is
positive, we now have to check if m+ is smaller than (s + 1)/2, as is the case because m+ = 4
and (s+ 1)/2 = 5. The number of close states, m0 = 3, is the same as in the previous example.
Equation (2) yields a new limit value of 1/8.

The above example illustrates a pattern that can be formulated in the following corollary:

Corollary 5. Fix the numbers m−,m0,m+ and let β = 0.5. If the inversion probability for
⟨c,p⟩ < α equals to P , then the inversion probability for ⟨c,p⟩ > α equals to 1− P .

This fact can be easily verified by adding the sums in Equations (2) and (3) of Asymptotic
Theorem under the above conditions. Changing from ⟨c,p⟩ < α to ⟨c,p⟩ > α, without changing
the number of close states m0 and the number of partisan states of either type, m− or m+,
results in the inversion probability changing from P to 1− P .

5 Summary

This paper provides the set of feasible limit values of the probability of majority inversion for
generic parametrizations of the type ⟨c,p⟩ ̸= α. Such parametrizations involve different levels
of support embodied in a state-specific binomial voting model, different population sizes, and
different voting quotas in the first and second stages of the voting procedure. In the asymptotic
setting, the number of voters tends to infinity but the number of states is fixed. This setting is
intended to serve as an approximation to real two-stage electoral systems with a large electorate
residing in a small number of states.

The application of Asymptotic Theorem is straightforward and requires as input only the
number of close and (the two kinds of) partisan states relative to the voting quota in the first
stage of the voting procedure and the quota in the second stage. The set of feasible limit values
obtained using the theorem can be conveniently presented in a table.

The Asymptotic Theorem does not provide any new tangible results for the knife-edge case
of a close election nationwide, where ⟨c,p⟩ = α. The most prominent special case in which the
limit cannot be determined is the classical binomial model of voting. Here, the theorem only
confirms the positivity of the limit probability for all cases where the entire population is not
asymptotically concentrated in a single state, or all states are close. Fortunately, the inversion
probability under the classical binomial model with equally-sized states has been extensively
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studied in the existing literature. Our contribution to this important special case includes a
new exact expression for the inversion probability that holds for any parametrization of the
model. For all other parametrizations such that ⟨c,p⟩ = α, the Exact Formula offers a means
of approximating the limit value numerically. But applying these nonasymptotic results is
computationally intensive.

The combination of Exact Formula and Asymptotic Theorem thus fills an important gap in
the literature. By considering a binomial model specific to each state with different-sized states
and an arbitrary voting quota in either stage of the two-stage voting procedure, the results
provided in this paper complement the exact and approximate results available in the theoretical
literature on the probability of majority inversions for the classical binomial model with equally-
sized states and simple majority rules. We believe that a comprehensive characterization of the
limits leads to a better understanding of the implications of a binomial setting in the context
of majority inversions and makes the binomial setting a more attractive analytical assumption
than the special case of the classical binomial model may have suggested so far.
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A Proof of Asymptotic Theorem

Consider a decomposition of the probability of majority inversion (1), whose summands can be

expressed in terms of ηi =
n+
i −nipi√

nipi(1−pi)
and µi =

mi√
pi(1−pi)

for i = 1, . . . , s as

P1(i1, . . . , ik) = P
( s∑
i=1

√
nipi(1− pi)ηi > Nα−

s∑
i=1

nipi,

ηi1 <
√
ni1µi1 , . . . , ηik <

√
nikµik , ηik+1

>
√
nik+1

µik+1
, . . . , ηis >

√
nisµis

)
,

P2(i1, . . . , ik) = P
( s∑
i=1

√
nipi(1− pi)ηi < Nα−

s∑
i=1

nipi,

ηi1 >
√
ni1µi1 , . . . , ηik >

√
nikµik , ηik+1

<
√
nik+1

µik+1
, . . . , ηis <

√
nisµis

)
.

Assume that n1/N → c1, . . . , ns/N → cs as N → ∞. Letting the shares of the states in the
total population converge as the number of voters tends to infinity, allows us to approximate
the above probabilities as

P1(i1, . . . , ik) ≈ P
( s∑
i=1

√
cipi(1− pi)ηi >

√
N(α− ⟨c,p⟩),

ηi1 <
√
ni1µi1 , . . . , ηik <

√
nikµik , ηik+1

>
√
nik+1

µik+1
, . . . , ηis >

√
nisµis

)
,

P2(i1, . . . , ik) ≈ P
( s∑
i=1

√
cipi(1− pi)ηi <

√
N(α− ⟨c,p⟩),

ηi1 >
√
ni1µi1 , . . . , ηik >

√
nikµik , ηik+1

<
√
nik+1

µik+1
, . . . , ηis <

√
nisµis

)
.

a) Case ⟨c,p⟩ < α

For ⟨c,p⟩ < α, the inequality
∑s

i=1

√
cipi(1− pi)ηi >

√
N(α−⟨c,p⟩) implies P1(i1, . . . , ik) → 0

for any s − ⌊sβ⌋ ⩽ k ⩽ s − 1 and any (i1, . . . , ik). Therefore,
∑s−1

k=s−⌊sβ⌋
∑

P1(i1, . . . , ik) → 0,
but

P2(i1, . . . , ik) ≈ P
(
ηi1 >

√
ni1µi1 , . . . , ηik >

√
nikµik , ηik+1

<
√
nik+1

µik+1
, . . . , ηis <

√
nisµis

)
≈

k∏
j=1

(
1− Φ(

√
nijµij )

) s−k∏
r=1

Φ
(√

nik+r
µik+r

)
. (4)

Note thatm+ ⩾ 1. Sincem+ ⩾ s−⌊sβ⌋ implies P2(i1, . . . , ik) → 0 for any ⌊sβ⌋+1 ⩽ k ⩽ s−1
and any (i1, . . . , ik), the inversion probability (1) tends to 0.

Let 1 ⩽ m+ ⩽ s− ⌊sβ⌋ − 1 and assume, without any loss of generality, that m1, . . . ,ms are
sorted in an ascending order.

For µ ∈ R, as n → ∞,

Φ(
√
nµ) →

{
1, for µ > 0

0, for µ < 0
and Φ(

√
nµ) = 1/2 for µ = 0.
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Therefore, any probability P2(i1, . . . , ik), which does not satisfy the condition:

{1, . . . ,m−} ⊂ {i1, . . . , ik} and {s−m+ + 1, . . . , s} ⊂ {ik+1, . . . , is} (5)

tends to 0, whereas any probability P2(i1, . . . , ik), which satisfies the condition (5), tends to
2−m0

. It remains to calculate the number of probabilities satisfying (5).
First, consider the case k = ⌊sβ⌋ + 1. For probabilities satisfying (5), there are s − ⌊sβ⌋ −

1−m+ free indexes among {ik+1, . . . , is}, so the number of such probabilities is
(

m0

s−⌊sβ⌋−1−m+

)
.

For k = ⌊sβ⌋+2 there are s−⌊sβ⌋−2−m+ free indexes among {ik+1, . . . , is}, so the number of

such probabilities is
(

m0

s−⌊sβ⌋−2−m+

)
, and so on. Therefore, the total number of such probabilities

is
s−⌊sβ⌋−1−m+∑

k=0

(
m0

k

)
,

which furnishes the proof of (2).

b) Case ⟨c,p⟩ > α

For ⟨c,p⟩ > α, the inequality
∑s

i=1

√
cipi(1− pi)ηi <

√
N(α−⟨c,p⟩) implies P2(i1, . . . , ik) → 0

for any ⌊sβ⌋ + 1 ⩽ k ⩽ s − 1 and any (i1, . . . , ik). Therefore,
∑s−1

k=⌊sβ⌋+1

∑
P2(i1, . . . , ik) → 0,

but

P1(i1, . . . , ik) ≈ P
(
ηi1 <

√
ni1µi1 , . . . , ηik <

√
nikµik , ηik+1

>
√
nik+1

µik+1
, . . . , ηis >

√
nisµis

)
≈

k∏
j=1

Φ(
√
nijµij )

s−k∏
r=1

(
1− Φ(

√
nik+r

µik+r
)
)
. (6)

Since the rest of the proof in case b) follows the same logic as in case a), we omit the details
and proceed with the proof of case c).

c) Case ⟨c,p⟩ = α

For ⟨c,p⟩ = α, we have

P1(i1, . . . , ik) ≈ P
( s∑
i=1

√
cipi(1− pi)ηi > 0,

ηi1 <
√
ni1µi1 , . . . , ηik <

√
nikµik , ηik+1

>
√
nik+1

µik+1
, . . . , ηis >

√
nisµis

)
,

P2(i1, . . . , ik) ≈ P
( s∑
i=1

√
cipi(1− pi)ηi < 0,

ηi1 >
√
ni1µi1 , . . . , ηik >

√
nikµik , ηik+1

<
√
nik+1

µik+1
, . . . , ηis <

√
nisµis

)
.

From the additional first inequality in the probabilities it follows that each P1(i1, . . . , ik) is
not larger than the corresponding probability (6), and that each P2(i1, . . . , ik) is not larger than
the corresponding probability (4).

Each probability P1(i1, . . . , ik), where s − ⌊sβ⌋ ⩽ k ⩽ s − 1, tends to 0 for m− ⩾ ⌊sβ⌋ + 1
and each probability P2(i1, . . . , ik), where ⌊sβ⌋+ 1 ⩽ k ⩽ s− 1, tends to 0 for m+ ⩾ s− ⌊sβ⌋.
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Therefore, if m− ⩾ ⌊sβ⌋ + 1 and m+ ⩾ s − ⌊sβ⌋ simultaneously, then P1 → 0, P2 → 0 and
P = P1 + P2 → 0. But the two inequalities cannot hold simultaneously, as m− +m+ ⩽ s.

If one of the population shares {ci} is equal to 1 and not all states are close (m ̸= 0s), then
zero limit can occur due to a contradiction between the first and the others inequalities in the
probability. For example, the inversion probability vanishes in the limit for β = 0.5 and the
population concentrated in a single close state, m− = m+ = (s− 1)/2 and m0 = 1.

B Frequencies of limit values for s = 3, . . . , 101 and β = 0.5

Table 5: Frequencies of limit values for s = 3, . . . , 101 and β = 0.5.

s 0 (0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1) 1
3 6 0 0 2 0 2 0 0 0 0 0 2
5 12 0 2 2 2 4 0 0 2 0 0 6
7 20 2 4 2 4 6 0 2 2 2 0 12
9 30 4 6 4 6 8 0 4 2 4 2 20
11 42 8 8 6 8 10 0 6 4 6 4 30
13 56 14 10 8 10 12 0 8 6 8 8 42
15 72 20 14 10 12 14 0 10 8 10 14 56
17 90 28 16 12 14 18 0 12 10 14 20 72
19 110 38 18 14 16 22 2 14 12 16 28 90
21 132 48 22 16 18 26 4 16 14 18 38 110
23 156 60 26 18 20 30 6 18 16 22 48 132
25 182 74 30 20 22 34 8 20 18 26 60 156
27 210 90 32 24 24 38 10 22 20 30 74 182
29 240 106 36 28 26 42 12 24 24 32 90 210
31 272 124 40 32 28 46 14 26 28 36 106 240
33 306 144 44 36 30 50 16 28 32 40 124 272
35 342 166 48 40 32 54 18 30 36 44 144 306
37 380 188 54 42 36 58 20 32 40 48 166 342
39 420 212 60 44 40 62 22 36 42 54 188 380
41 462 238 64 48 44 66 24 40 44 60 212 420
43 506 266 68 52 48 70 26 44 48 64 238 462
45 552 296 72 56 52 74 28 48 52 68 266 506
47 600 328 76 60 56 78 30 52 56 72 296 552
49 650 360 82 64 60 82 32 56 60 76 328 600
51 702 394 88 68 64 86 34 60 64 82 360 650
53 756 430 94 72 68 90 36 64 68 88 394 702
55 812 468 100 76 72 94 38 68 72 94 430 756
57 870 508 104 82 76 98 40 72 76 100 468 812
59 930 548 110 88 80 102 42 76 82 104 508 870
61 992 590 116 94 84 106 44 80 88 110 548 930
63 1056 634 122 98 90 110 46 84 94 116 590 992
65 1122 680 128 102 94 114 50 90 98 122 634 1056
67 1190 728 134 106 98 120 54 94 102 128 680 1122
69 1260 778 140 110 102 124 60 98 106 134 728 1190
71 1332 828 148 114 106 130 64 102 110 140 778 1260
73 1406 880 156 118 110 136 68 106 114 148 828 1332
75 1482 934 164 122 114 142 72 110 118 156 880 1406
77 1560 990 170 128 118 146 78 114 122 164 934 1482
79 1640 1048 176 134 122 150 84 118 128 170 990 1560
81 1722 1108 182 140 126 154 90 122 134 176 1048 1640
83 1806 1170 188 146 130 160 94 126 140 182 1108 1722
85 1892 1232 196 152 134 164 100 130 146 188 1170 1806
87 1980 1296 204 158 138 170 104 134 152 196 1232 1892
89 2070 1362 212 164 142 176 108 138 158 204 1296 1980
91 2162 1430 220 170 146 182 112 142 164 212 1362 2070
93 2256 1500 228 176 150 186 118 146 170 220 1430 2162
95 2352 1572 236 182 154 190 124 150 176 228 1500 2256
97 2450 1646 244 186 160 196 128 154 182 236 1572 2352
99 2550 1722 250 192 166 202 132 160 186 244 1646 2450
101 2652 1798 258 198 172 206 138 166 192 250 1722 2550
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