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Abstract

Two-stage voting is prone to majority inversions, a situation in which the outcome of an
election is not backed by a majority of popular votes. We study the probability of majority
inversion in a model with two candidates, three states and uniformly distributed fractions
of supporters for each candidate. The model encompasses equal or distinct population sizes,
with equal, population-based or arbitrary voting weights in the second stage. We prove
that, when no state can dictate the outcome of the election by commanding a voting weight
in excess of one half, the probability of majority inversion increases with the size disparity
among the states.
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1 Introduction

Two-way elections conducted using two-stage voting procedures are prone to majority inversions,
a situation in which the outcome of an election does not represent the will of a majority of
voters. We study a model of two-stage voting with three states (constituencies, districts), derive
the probability of majority inversion as a function of the population weights, and relate this
probability to the inequality in the distribution of population among the states.

Two-stage voting requires the voters to be grouped into states. In the first stage, each voter
casts a single vote for one of the two candidates (parties, referendum options). The outcome
of the first stage is called the popular vote. In the absence of ties, the simple majority rule
picks a winner in each state and in the country. The hallmark of a two-stage voting system
is that the popular vote does not determine the outcome of the election. It is decided by the
electoral vote in the second stage. Electoral votes are cast by the electors, each representing one
state in an assembly of states. The electors may command several votes. We assume that each
elector casts all of his votes as a bloc for the candidate who obtained a majority in the state the
elector represents, thus sidestepping the issue of ‘faithless electors’. The election is awarded to
the candidate with a majority of electoral votes, who may not be the candidate that won the
popular vote. Majority inversion takes place if the outcome of the election does not coincide
with the popular vote.

The U.S. presidential election is not a two-way election.1 If we held the U.S. presidential
election for what it essentially always was: a contest between the Democrats and Republicans,
we would identify four majority inversions in the past. Since more populous states command
more electoral votes, the second-stage votes in the Electoral College system are weighted. By
contrast, the second-stage votes in legislative elections are not weighted. In a single-member-
district majority system, each district elects one member of the parliament in the first stage.
The member then casts a single vote on a series of bills over the course of a legislature term,
which can be viewed as the second stage of a two-stage voting process. Majority inversion occurs
if the party that obtained a majority of seats in parliament is not the party that won a majority
of votes.2 This variety suggests that a comprehensive model of two-stage voting should admit
constituencies of different sizes and weighted voting in the second stage. We shall refer to the
system with population-weighted second-tier votes as Electoral College (EC)3 and the single-
member-district majority system as Westminster (WM). The third model, denoted EP, is the
baseline model of equipopulous states that is commonly studied in the theoretical literature on
majority inversions. The forth model, denoted GM, is the most general one. It involves states
of different population sizes and weighted electoral votes.

May (1948) appears to have taken the first step towards computing the probability of major-
ity inversion in a two-stage model with an odd number of equally-sized states. May workes with
a discrete uniform distribution for the number of supporters of a certain candidate in each state,
which became a continuous uniform distribution in the limiting case of infinitely many voters.
The assumption of a uniform distribution implies that all levels of support for a given candidate,

1For example, ten candidates ran for office in each of the three recent elections: 2008, 2012, 2016.
2Miller (2012) documents inversions in legislative elections in the British-type or Westminster parliamentary

systems. For parliamentary elections contested by more than two parties, one can ensure that the voters face a
choice between two alternatives by using the typical left-right ideological dichotomy to define the outcome.

3We are aware of the fact that the actual weights used by the U.S. Electoral College do not accurately reflect the
relative difference in the population among the states. Nevertheless, weighting electoral votes by the population
is the intended design. The current allocation of votes to the states is based on the 2010 Census and applies to
the 2012, 2016 and 2020 presidential elections.
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whether expressed in absolute terms in persons or in relative terms as a percentage, are equally
likely. The recent wave of theoretical results placed Mays work in the context of the stochastic
models of voting behavior used in the contemporary voting theory. Feix, Lepelley, Merlin and
Rouet (2004) and Lepelley, Merlin and Rouet (2011) extend the calculations to an even number
of states and provide numerical simulations when the number of states is large. May assumes
that the levels of popular support in any two states are independent random variables. This
assumption is relaxed in De Mouzon, Laurent, Le Breton and Lepelley (2017), who perform a
comprehensive analysis of the rate of converge of the probability of majority inversion as the
number of states increases, under the assumption that any two votes in the electorate correlate.

The baseline model (EP) maintains equally-sized states and a ‘one person, one vote’ principle
at both stages of the two-stage voting procedure. The ‘one person, one vote’ principle is a natural
assumption for the first stage, where it embodies the democratic principle of equal suffrage among
the voters. It is also consistent with the assumption of equally-sized states, since the number
of electoral votes awarded to a state usually depends on its size. The next level of complexity
involves states of different population sizes (WM), followed by electoral votes weighted either
with the population weights (EC), or with arbitrary weights (GM).

Studies of the weighted model can be found in Lepelley, Merlin, Rouet and Vidu (2014)
for the case of three states, and in Kikuchi (2016) as the number of states tends to infinity.
Lepelley et al. (2014) showed that weighting the second-tier votes proportionally to the ratio of
the square-roots of population sizes, a method famously known to equalize the indirect voting
power in two-stage voting systems, does not minimize the probability of majority inversion.4

Consistent with the literature on the Square-Root Rule, Lepelley et al. (2014) used the Impartial
Culture (IC) model. While the probability of majority inversion can be computed under IC, the
companion Impartial Anonymous Culture (IAC) model is preferable due to it being extendable
to infinite populations. The continuous uniform model used in this paper arises as a limiting case
of the IAC model applied at the state level, while maintaining May’s independence assumption
between the states. De Mouzon et al. (2017) refer to this model as IAC*.

The present paper is motivated by Kikuchi (2016), who provided several far-reaching results
for weighted votes. He established that equal weights minimize the probability of majority
inversion and that this probability increases monotonically with the dispersion of population
weights to an upper bound of one half. Kikuchi’s results are asymptotic in the number of states
and, therefore, do not apply when the number of states is small. In particular, letting the number
of states tend to infinity implies that the weight of each state tends to zero. Indeed, we show
that, for three states, increasing the inequality of voting weights increases the probability only
if the population weight of the largest state does not exceed one half, and that the distribution
of the population among the three states which attains the bounds on this probability depends
on the weighting scheme at the second stage. The largest voting weight exceeding one half is
equivalent to the largest state being a ‘dictator’. Our principal tool is the theory of majorization
and Schur-convexity (Marshall, Olkin and Arnold 2011), which are closely related to the theory
of inequality measurement (Yitzhaki and Schechtman 2013).

2 The model

Models must make assumptions to stay amenable to analytical treatment. Three such assump-
tions stand out in the literature. The first is a near-universal equation of turnout and population.

4For a discussion of the Penrose Square-Root Rule, see Felsenthal and Machover (1998).
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This simplification overlooks the fact that not every resident of a state may be eligible to vote,
and that some of those who are eligible may abstain. The equation of turnout and population is
admissible when the turnout is treated as exogenous. The second assumption limits the number
of states. Confining to a minimum of three states may be the only path to a tractable model, as
will be the case in this paper. The third assumption commonly found in the literature imposes
the equality of state sizes. We seek to relax this assumption, while equating turnout and popu-
lation. This allows us to equate the turnout share with the population share, both of which will
be referred to as the population weight. The second weight of the state is given by the share of
the electoral votes it commands. This is the voting weight.

The voters face two alternatives, A and B. Let the number of states be n, where n is odd,
and n > 1. The variations of the standard two-stage voting models studied in this paper rest
on three assumptions. For each state i = 1, . . . , n:

A.1 wi > 0 the population weights, such that
∑n

i=1wi = 1;

A.2 vi > 0 the voting weights, such that
∑n

i=1 vi = 1;

A.3 ai ∼ U(0, 1) the share of voters in state i who support A, where the uniformly distributed
random variables a1, . . . , an are independent.

Three types of asymptotic analysis can be found in the literature: 1) the number of voters in
each state tends to infinity, 2) the number of states tends to infinity, or 3) both quantities tend to
infinity, a typology that goes back to the pioneering work by May (1948). The second and third
kind of asymptotic analysis should be particularly susceptible to producing distorted results in
comparison with the exact calculations. The assumption [A.3] forebodes an asymptotic analysis
of the first kind. The analysis presented in this paper indeed assumes a ‘continuum’ of voters
in each state, which is an approximation to what happens in large electorates.

Instead of specifying the behavior of an individual voter, the stochastic element of the model
describes the share of supporters of A in each state. The uniform distribution for the share of
supporters arises as a limiting case of the beta-binomial model of individual voting behavior. In
the beta-binomial model, the probability of a voter supporting the alternative A, denoted pa, is
drawn from a uniform distribution U(0, 1), which is also a Beta(1, 1) distribution (Section 4.4
in Casella and Berger (2002)). This probability is then assigned as the probability of success
to a binomial random variable Sa, denoting the absolute number of supporters of A. Let m be
the number of voters. The random variable Sa thus follows a discrete uniform distribution on
[0, 1, . . . ,m− 1,m] and the share of voters who support A, or Sa/m, follows a discrete uniform
distribution on [0, 1/m, . . . , (m − 1)/m, 1], which becomes continuous in the limit as m → ∞.
This is how May (1948) handles large electorates.

The beta-binomial model of individual voting behavior has the binomial model of voting as
its simpler companion. The binomial model assumes that each vote has an equal probability of
being cast for or against an alternative, and that all votes are independent. The two models
are well-known to the voting theorist under the names of the Impartial Anonymous Culture
(IAC) and Impartial Culture (IC). They are standard in much of the literature on voting power
and procedures. The beta-binomial model, or IAC, is consistent with the Shapley-Shubik index
of voting power, whereas the binomial model, or IC, underlies the Penrose-Banzhaf measure
of power (Straffin 1977). Table 1 summarizes the implications of the two models for the joint
probability distribution of the combinations of votes and their sums (number of supporters).
With m voters, there will be 2m combinations of binary votes called voting profiles, with m+ 1
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sums ranging from 0 to m. The number of profiles containing k supporters is given by the
binomial coefficient Ck

m = m!/[k!(m− k)!] for m, k ∈ N, where Ck
m = 0 for m < k. It is evident

that the uniform model for a share of supporters is the limiting case of the IAC. Under this model
of individual voting behavior, any attainable level of support is equally likely. This paper adopts
the limiting case of the IAC model at the state level, while maintaining May’s independence
assumption between the states.

Table 1: Probabilities for IC and IAC models.

of Binomial (IC) Beta-binomial (IAC)

one of 2m voting profiles 1
2m

1
(m+1)Ck

m

any of Ck
m voting profiles Ck

m
2m

1
m+1

Coming back to the assumptions A.1 to A.3, if the turnout is equal to the population, then
the share of state i in the total population of the county, or wi, is also the share of i in total
turnout. If the share of supporters of A in state i is a uniformly distributed random variable,
then the share of supporters of B in state i will also follow a uniform distribution. Although the
analysis in this paper will be conducted in terms of shares, all voting outcomes can be expressed
in absolute terms. If the total population equals the total turnout m, then the total number
of votes cast in state i equals wim, of which aiwim favored A and the remaining (1 − ai)wim
favored B. The total number of voters who voted for A thus becomes m

∑n
i=1 aiwi.

A majority inversion occurs when A loses the popular vote but wins the electoral vote,
or when A wins the popular vote but loses the electoral vote. The probabilities of these two
compound events are, respectively,

P

 n∑
i=1

wiai <
1

2
,

n∑
j=1

vj1{aj> 1
2
} >

1

2

 and P

 n∑
i=1

wiai >
1

2
,

n∑
j=1

vj1{aj> 1
2
} <

1

2

 .

Since both compound events are equally probable and mutually exclusive, the probability of
majority inversion can be written more compactly as

P (w1, . . . , wn, v1, . . . , vn) = 2P


n∑

i=1

wiai <
1

2
,

n∑
j=1

vj1{aj> 1
2
} >

1

2

 .

The following analysis will be conducted in terms of the random variables x1, . . . , xn, where
xi = ai − 1

2 ∼ U(−1
2 ,

1
2) for i = 1, . . . , n. The probability of majority inversion then becomes:

P (w1, . . . , wn, v1, . . . , vn) = 2P


n∑

i=1

wixi < 0 ,

n∑
j=1

vj1{xj>0} >
1

2

 . (1)

The above transformation simplifies the computations without altering the sought probability.
Several additional remarks concern the notation. Since each set of weights sums to unity,

formula (1) has 2(n− 1) free variables. Nonetheless, we shall use the entire vector of weights as
an argument, keeping in mind that one of its elements is determined implicitly. Secondly, with
few exceptions that will be noted, all results in this paper apply to n = 3 only. Thirdly, we
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assume, without any loss of generality, that the population weights are sorted in a descending
order. Finally, we derive the probability of majority inversion for the following variations of the
two-stage voting model:

Equal Population (EP): wi = vi = 1/n for all i = 1, 2, . . . , n;

Westminster (WM): vi = 1/n for all i = 1, 2, . . . , n;

Electoral College (EC): vi = wi for all i = 1, 2, . . . , n;

General Model (GM) with weights as in the assumptions A.1 and A.2.

In general, the probability of majority inversion depends on the population weights w1, . . . , wn

and the voting weights v1, . . . , vn. In the particular models EP, WM and EC, however, the
voting weights are either fixed or tied to the population weights. Since in three of the models
the probability depends on the population weights only, and in view of our focus on the ef-
fect of the inequality in population weights on the inversion probability, we shall always write
P (w1, . . . , wn) instead of P (w1, . . . , wn; v1, . . . , vn), separately listing all those combinations of
voting weights, for which the probability takes distinct values.

The final remark pertains to ties. The possibility of ties significantly encumbers the analysis
of voting models, often without producing new insights. We need to ensure that neither the
popular vote nor the electoral vote can result in a tie. The assumption of a continuous probability
distribution for the share of the electorate supporting a certain alternative technically precludes
ties in the popular vote. The parity of n rules out ties in the electoral vote for models EP
and WM, but not for GM and EC. To exclude ties in the electoral vote for any n, we assume
that none of 2n combinations of the voting weights add to 1/2. Whenever such cases implicitly
appear in calculations, they should be viewed as limiting cases.

3 The case of three states

For any x ∈ Rn, let x[1] ≥ · · · ≥ x[n] denote the elements of x in a descending order. The
first result is a formula for the probability of majority inversion for an arbitrary distribution of
population and voting weights sorted in a descending order.

Theorem 1. For GM, the probability of majority inversion as a function of the population
weights assumes the following expressions.
i). If the largest voting weight v[1] ≤ 1

2 , then

P (w1, w2, w3) =


w[1]−w[2]

8w[3]
+

w[1]−w[3]

8w[2]
+

w[2]−w[3]

8w[1]
−

w2
[1]

24w[2]w[3]
+

w2
[2]

24w[1]w[3]
+

3w2
[3]

24w[1]w[2]
if w[1] ≤ 1

2 ;

1
4 − w[3]

4w[1]
+

w2
[3]

12w[1]w[2]
if w[1] >

1
2 .

ii). If v[1] >
1
2 , and the indices of v[1] and w[1] coincide, then

P (w1, w2, w3) =


1
4 − w[1]−w[2]

8w[3]
− w[1]−w[3]

8w[2]
+

w[2]−w[3]

8w[1]
+

w2
[1]

24w[2]w[3]
−

w2
[2]

24w[1]w[3]
+

w2
[3]

24w[1]w[2]
if w[1] ≤ 1

2 ;

w[2]

4w[1]
+

w2
[3]

12w[1]w[2]
if w[1] >

1
2 .
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iii). If v[1] >
1
2 , and the indices of v[1] and w[2] coincide, then

P (w1, w2, w3) =

1
4 +

w[1]−w[2]

8w[3]
+

w[1]−w[3]

8w[2]
− w[2]−w[3]

8w[1]
−

w2
[1]

24w[2]w[3]
+

w2
[2]

24w[1]w[3]
+

w2
[3]

24w[1]w[2]
if w[1] ≤ 1

2 ;

1
2 − w[2]

4w[1]
if w[1] >

1
2 .

iv). If v[1] >
1
2 , and the indices of v[1] and w[3] coincide, then

P (w1, w2, w3) =

1
4 +

w[1]−w[2]

8w[3]
+

w[1]−w[3]

8w[2]
+

w[2]−w[3]

8w[1]
−

w2
[1]

24w[2]w[3]
+

w2
[2]

24w[1]w[3]
+

w2
[3]

24w[1]w[2]
if w[1] ≤ 1

2 ;

1
2 − w[3]

4w[1]
if w[1] >

1
2 .

A proof of Theorem 1 can be found in Appendix A.
The first case in Theorem 1 is the main case. In the other three cases, the largest state

can dictate the outcome of the election. The ‘dictatorship’ cases are more peculiar. They differ
amongst themselves and from the main case in the population shares that minimize or maximize
the probability of majority inversion, and in the way this probability relates to the inequality of
population weights. Both of these aspects will be explored below.

The simplest of the three models, EP, corresponds to the limiting case of the model in May
(1948), as the electorate size tends to infinity, but the number of states remains fixed. We can
adapt Theorem 1 to WM, which is a two-stage voting model with three states of unequal size
commanding an equal number of electoral votes, or EC, in which the electoral votes are weighted
based on the population.

Corollary 1. For WM, the probability of majority inversion is:

P (w1, w2, w3) =


w[1]−w[2]

8w[3]
+

w[1]−w[3]

8w[2]
+

w[2]−w[3]

8w[1]
−

w2
[1]

24w[2]w[3]
+

w2
[2]

24w[1]w[3]
+

3w2
[3]

24w[1]w[2]
if w[1] ≤ 1

2 ;

1
4 − w[3]

4w[1]
+

w2
[3]

12w[1]w[2]
if w[1] >

1
2 .

The top formula for the probability holds for the case when the ‘one person, one vote’ rule
applies at each stage, as EP is subsumed in WM for w[1] ≤ 1

2 . The top formula also holds for
EC.

Corollary 2. For EC, the probability of majority inversion is:

P (w1, w2, w3) =


w[1]−w[2]

8w[3]
+

w[1]−w[3]

8w[2]
+

w[2]−w[3]

8w[1]
−

w2
[1]

24w[2]w[3]
+

w2
[2]

24w[1]w[3]
+

3w2
[3]

24w[1]w[2]
if w[1] ≤ 1

2 ;

w[2]

4w[1]
+

w2
[3]

12w[1]w[2]
if w[1] >

1
2 .

The proof of Theorem 1 shows that the formula for WM turns out to be identical to the
formula for EC for any given odd n, provided that the largest population weight does not
exceed the sum of the two smallest weights, w[n−1] + w[n] ≥ w[1]. The population weights must
be sufficiently distinct for them to have an effect on the probability of majority inversion when
used as voting weights in the second stage. With equipopulous states in EP, this probability
equals 1/8. It increases to 7/24 in the presence of a ‘dictator’ at the second stage of the voting
procedure.
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Figure 1: Population weights and the Gini coefficient for n = 3.
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4 Inequality of weights

To study how the probability of majority inversion varies with inequality of population weights,
we first need to express the degree of inequality as a function of weights. Despite the existence
of several inequality metrics, the Gini coefficient is certainly among the most popular metrics,
if not the most popular one (Yitzhaki and Schechtman 2013). Figure 1 shows the admissible
population weights and the Gini coefficient as a measure of their inequality, when w1 ≥ w2 ≥ w3.
The assumed order of the population weights entails the following upper bounds on the smallest
two weights: w3 ≤ 1/3 and w2 ≤ 1/2, whereas the implicit largest weight w1 = 1 − w2 − w3

can vary freely in [1/3, 1]. For a general input vector of positive elements, the Gini coefficient
takes values between zero and one. The value of zero indicates the equality, the value of one the
maximal inequality. This range may narrow to a subset of the unit interval if the elements of
the input vector are constrained. For an input vector of n shares that add to one, the maximum
equals (n− 1)/n. The main property still holds: the larger the coefficient, the more unequal the
distribution. The Gini coefficient is defined as

G(w1, w2, . . . , wn) =
2
∑n

i=1(n− i+ 1)wi

n
∑n

i=1wi
− n+ 1

n
for w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn > 0.

In the case of three weights, such that w1 +w2 +w3 = 1, it assumes a particularly simple form:

G(w1, w2, w3) =
2(w1 − w3)

3
,

taking the minimal value of zero for w1 = w2 = w3 = 1/3, and the maximal value of 2/3 for
w1 = 1 and w2 = w3 = 0.

The essential property of the Gini coefficient is strict Schur-convexity, a natural property for
an inequality metric. This property ensures that taking from the poor and giving to the rich
strictly increases inequality. A Schur-convex function preserves the order under majorization as
a relational property between a pair of vectors x and y. To define majorization, we first need to
compare the partial sums of the sorted elements of each vector. The following two definitions
can be found in Marshall et al. (2011) (Ch. 1, Definition A.1; Ch. 3, Definition A.1):
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Definition 1. For x, y ∈ Rn,

x ≺ y if

{∑k
i=1 x[i] ≤

∑k
i=1 y[i], k = 1, . . . , n− 1,∑n

i=1 x[i] =
∑n

i=1 y[i].

When x ≺ y, x is said to be majorized by y (y majorizes x).

The vector y majorizes x if their elements sum to the same value, but the elements of y are
more dispersed than the elements of x. Higher dispersion causes the partial sum of the sorted
y to lead the partial sum of the sorted x for any k. Marshall et al. (2011) provide numerous
applications in which majorization arises and discuss several tests of this property.

Definition 2. A real-valued function ϕ defined on a set A ⊂ Rn is said to be Schur-convex on
A if

x ≺ y on A ⇒ ϕ(x) ≤ ϕ(y).

If in addition, ϕ(x) < ϕ(y) whenever x ≺ y but x is not a permutation of y, then ϕ is said to be
strictly Schur-convex on A.

Being isotonic relative to the preordering ≺, a Schur-convex function increases with disper-
sion in its arguments. As a strictly Schur-convex function, the Gini coefficient strictly increases
with dispersion, expressing the fact that higher concentration implies more inequality.

The following characterization quoting Marshall et al. (2011) (Ch. 3, Lemma A.2) is partic-
ularly intuitive in the context of inequality measurement.

Lemma 1. Let ϕ be a continuous real-valued function defined on

D = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn}.

Then ϕ is Schur-convex on D, if and only if for all z ∈ D and k = 1, . . . , n− 1,

ϕ(z1, . . . , zk−1, zk + ε, zk+1 − ε, zk+2, . . . , zn)

is increasing in ε over the region

0 ≤ ε ≤ z2 − z3, k = 1,

0 ≤ ε ≤ min{zk−1 − zk, zk+1 − zk+2}, k = 2, . . . , n− 2,

0 ≤ ε ≤ zn−2 − zn−1, k = n− 1.

The last set of inequalities ensures that transferring a positive ε from zk+1 to zk increases the
dispersion among the arguments. Consequently, the lemma says that increasing the dispersion
cannot decrease the value of the function. There exist alternative definitions of Schur-convexity
for narrower classes of functions, such as symmetric functions with or without partial derivatives.

The second theorem establishes that the probability of majority inversion is a Schur-convex
function of the population weights.

Theorem 2. For GM, the probability of majority inversion is Schur-convex if the largest voting
weight v[1] ≤ 1

2 .
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A proof of Theorem 2 is given in Appendix B.
Theorem 2 implies that the probability of majority inversion is a Schur-convex function of

the population weights for EC for w[1] ≤ 1
2 and also for WM. For these common types of

indirect voting systems, we can formulate the following rule: the more unequal the states, the
more likely inversion is to occur.

The superposition rules for the Schur-convex function summarized in Ch. 3, Table 1 in Mar-
shall et al. (2011) imply a monotonic relationship between the probability of majority inversion
and the inequality of population weights. The Schur-convexity of the two functions ensures that
if a third coupling function h exists, such that P (w1, w2, w3) = h(G(w1, w2, w3)), then h must
be increasing. Putting the two results together allows us to conclude that with three states the
probability of majority inversion increases with inequality in state sizes, provided that the share
of the largest state does not exceed one half.

4.1 Bounds on the probability for n = 3

Figure 2 shows the probability of majority inversion for WM and EC when w1 ≥ w2 ≥ w3. A
comparison of the right panel of Figure 1 with Figure 2 illustrates the property established in
Theorem 2. The probability of majority inversion increases with the inequality in population
weights as measured by the Gini coefficient, provided that no state can dictate the outcome of
an election.

Turning to the extremal values of the probability of majority inversion for different distri-
bution of weights, let us again first consider WM and EC. The left panel shows that for WM
the global maximum takes the value 1/4 for w3 = 0. The global maximum is not unique. The
global minimum appears to lie somewhere between 0.1 and 0.15; the actual value being 1/8 at
w1 = w2 = w3 = 1/3. The limiting behavior of the probability for EC is different from that
for WM. The right panel shows a crest of local maxima for EC. They occur for all population
weights such as (1/2, 1/2 − w3, w3), with the global maximum of 1/4 for w3 = 0. This fact is
proven in Appendix C. For EC, substituting n = 3 and (1, 0, 0) in the general formula (1) yields
P (1, 0, 0) = 0, which is the global minimum. Arguments similar to those used in Appendix C
yield the following complete characterization of the extrema, which we state without a proof.

Theorem 3. For GM, the probability of majority inversion as a function of the population
weights assumes the following expressions.
i). If the largest voting weight v[1] ≤ 1

2 , then

minP (w1, w2, w3) =
1

8
for (w∗

1, w
∗
2, w

∗
3) =

(
1

3
,
1

3
,
1

3

)
maxP (w1, w2, w3) =

1

4
for (w∗

1, w
∗
2, w

∗
3) = (w∗

1, 1− w∗
1, 0) for any w∗

1 ≥ 1

2
.

ii). If v[1] >
1
2 , and the indices of v[1] and w[1] coincide, then

minP (w1, w2, w3) = 0 for (w∗
1, w

∗
2, w

∗
3) = (1, 0, 0)

maxP (w1, w2, w3) =
7

24
for (w∗

1, w
∗
2, w

∗
3) =

(
1

3
,
1

3
,
1

3

)
.
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Figure 2: The probability of majority inversion for n = 3.
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iii). If v[1] >
1
2 , and the indices of v[1] and w[2] coincide, then

minP (w1, w2, w3) =
1

4
for (w∗

1, w
∗
2, w

∗
3) =

(
1

2
,
1

2
, 0

)
maxP (w1, w2, w3) =

1

2
for (w∗

1, w
∗
2, w

∗
3) = (1, 0, 0).

iv). If v[1] >
1
2 , and the indices of v[1] and w[3] coincide, then

minP (w1, w2, w3) =
7

24
for (w∗

1, w
∗
2, w

∗
3) =

(
1

3
,
1

3
,
1

3

)
maxP (w1, w2, w3) =

1

2
for (w∗

1, w
∗
2, w

∗
3) = (w∗

1, 1− w∗
1, 0) for any w∗

1 ≥ 1

2
.

The models WM and EC are covered by i) and i)-ii), respectively.

5 Discussion

How do the above results relate to the existing literature? Let us start with the simplest model
EP, in which all states have equal population and voting weights. May (1948) offered a complete
analysis of the discrete case, as well as various limiting cases, one of which corresponds to EP
for any odd n ≥ 3. His formula for the probability of majority inversion for EP reads:

P (∞, n) =
1

n!2n−1

n−1
2∑

r=1

n−1
2

−r∑
i=0

(−1)iCi
nC

i+r
n rn. (2)

The notation P (∞, n) indicates a ‘continuum’ of voters populating n states. This probability is
best viewed as an approximation, which May calls the ‘large number of voters in each district’
model, because assuming equally sized states populated by infinitely many voters is a simpli-
fication characteristic of a continuous population model. These qualifications equally apply to
the three models studied in this paper. May has also established that, as the number of states
tends to infinity, the probability of majority inversion tends to 1/6, concluding with

11



‘On the basis of the simple case here considered, the best we can do is to suggest that
for the values of m and n usually encountered the probability is of the order of 1/6’.

May used his formula to compute the probability of majority inversion for n = 3, 5, 7, 9. We
verify May’s first four values using the software LattE by Baldoni, Berline, De Loera, Dutra,
Köppe, Moreinis, Pinto, Vergne and Wu (2014).5 Our results

1

8
,
55

384
,
577

3840
,
1589879

10321920

agree with May’s (1/8, 0.143, 0.150, 0.154) (Table on p. 208 in May 1948). We switch to nu-
merical simulation starting from n = 11. The bottom line in Figure 3 shows the probability
of majority inversion for EP. The first four exact values are connected by a solid line. The
simulated values from n = 11 till n = 101 are connected with a dashed line. It is evident that
the numerically simulated probability tends to 1/6, as n → ∞.

Let us now turn to the more general model WM. The model EP is a special case of WM
with equally-sized states. For WM and n = 3, Theorem 2 shows that the probability is a
Schur-convex function of population weights. Consequently, for n = 3, the lower bound on the
probability is attained for (13 ,

1
3 ,

1
3), whereas the upper bound is attained for (w1, 1− w1, 0) for

any w1 ≥ 1
2 , if the population weights are sorted in a descending order (Theorem 3). Moreover

for WM, we can use formula (1) to obtain the following probability

P (1, 0, . . . , 0︸ ︷︷ ︸
n−1

) =

(n−1)/2∑
k=1

C
(n−1)/2+k
n−1

1

2n−1
=

1

2n−1

(n−3)/2∑
k=0

Ck
n−1 =

1

2
−

C
(n−1)/2
n−1

2n
. (3)

We show the probability (3) in Figure 3 as the solid line. The probability (3) increases from 1/4
to 1/2, when n increases from three to infinity.

The maximum inequality among the states is achieved by concentrating all voters in a single
state. The cases of ‘empty’ states are purely hypothetical, because the absence of voters at
the first stage makes voting in the second stage meaningless. Note also that the formulae
in Theorem 1 and its corollaries require strictly positive weights. Nevertheless, the general
formula for the probability of majority inversion (1) remains valid. We have already noted that
substituting the vector (1, 0, 0) in (1) yields zero probability of majority inversion for EC. This
result generalizes to any odd n ≥ 3, as

P (1, 0, . . . , 0︸ ︷︷ ︸
n−1

) = 0.

The overall lower and upper bounds for the probability of majority inversion of 0 and 1/2 agree
with the results of the asymptotic analysis in Kikuchi (2016).

We shall conclude the paper by revisiting the relationship between weight inequality and the
probability of majority inversion and formulating a conjecture. We established that for n = 3,
the probability of majority inversion for WM is bounded between May’s formula (2) and (3).
For n = 3, the bounding values are 1/8 and 1/4. We conjecture that these bounding functions
apply for any odd n ≥ 3, or that May’s formula (2) remains the lower bound and (3) remains
the upper bound on the probability of majority inversion for WM for any odd n ≥ 3. This

5The theoretical background for the methods used in LattE is elaborated in De Loera, Dutra, Köppe, Moreinis,
Pinto and Wu (2013).
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Figure 3: Conjectured bounds on the probability of majority inversion for WM.
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1/8

1/6

1/4

1/2

conjecture would be proven if one could establish Schur-convexity of the probability of majority
inversion for WM for any odd number of states, a challenge that we leave to future work.
Although the asymptotic analysis in Kikuchi (2016) lends optimism in this matter, we surmise
that proving this conjecture may require methods more advanced than those used in this paper.

Acknowledgments: We would like to thank Michel Le Breton for constructive criticism.
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A Proof of Theorem 1 (Probability of Inversion)

If v[1] ≤ 1
2 , then the probability of majority inversion

P (w1, w2, w3) = 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (−1

2 , 0), x2 ∈ (0, 12), x3 ∈ (0, 12)
)

(P1)

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (−1

2 , 0), x3 ∈ (0, 12)
)

(P2)

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (0, 12), x3 ∈ (−1

2 , 0)
)
. (P3)

Each summand can be expressed as a multiple integral

Pi =
2

w1w2w3

∫ ∫ ∫
Ai

dxdydz for i = 1, 2, 3,

evaluated over the following convex polytopes

A1 = {(x, y, z) : x ∈ (0, w1
2 ), y ∈ (0, w2

2 ), z ∈ (0, w3
2 ), x > y + z},

A2 = {(x, y, z) : x ∈ (0, w1
2 ), y ∈ (0, w2

2 ), z ∈ (0, w3
2 ), y > x+ z},

A3 = {(x, y, z) : x ∈ (0, w1
2 ), y ∈ (0, w2

2 ), z ∈ (0, w3
2 ), z > x+ y}.

Here, we use the fact that if xi ∼ U(−1
2 ,

1
2), then also −xi ∼ U(−1

2 ,
1
2) for i = 1, 2, 3.

Assume w1 ≥ w2 ≥ w3. Eliminating y yields

P (w1, w2, w3) =
2

w1w2w3

∫ ∫
A′

1

(x− z)dxdz +
1

w1w3

∫ ∫
A′′

1

dzdx (P1)

+
2

w1w2w3

∫ ∫
A′

2

(w2

2
− x− z

)
dxdz (P2)

+
2

w1w2w3

∫ ∫
A′

3

(z − x)dzdx, (P3)

where the transformed integration regions are given by

A′
1 = {(x, z) : x ∈ (0, w1

2 ), z ∈ (0, w3
2 ), 0 < x− z < w2

2 },
A′′

1 = {(x, z) : x ∈ (0, w1
2 ), z ∈ (0, w3

2 ), x− z ≥ w2
2 },

A′
2 = {(x, z) : x ∈ (0, w1

2 ), z ∈ (0, w3
2 ), x+ z < w2

2 },
A′

3 = {(x, z) : x ∈ (0, w1
2 ), z ∈ (0, w3

2 ), z − x > 0}.

The integrals corresponding to P2 and P3 evaluate as

P2 =
2

w1w2w3

∫ w3
2

0
dz

∫ w2
2
−z

0

(w2

2
− x− z

)
dx =

1

w1w2w3

∫ w3
2

0

(w2

2
− z

)2
dz =

3w2
2 − 3w2w3 + w2

3

24w1w2
,

P3 =
2

w1w2w3

∫ w3
2

0
dz

∫ z

0
(z − x)dx =

1

w1w2w3

∫ w3
2

0
z2dz =

w2
3

24w1w2
.

The value of P1 depends on whether the largest weight exceeds 1
2 .
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If w1 >
1
2 , then

P1 =
2

w1w2w3

∫ w3
2

0
dz

∫ z+
w2
2

z
(x− z)dx+

1

w1w3

∫ w3
2

0
dz

∫ w1
2

z+
w2
2

dx

=
w2

4w1w3

∫ w3
2

0
dz +

1

w1w3

∫ w3
2

0

(
w1 − w2

2
− z

)
dz =

2w1 − w2 − w3

8w1
.

If w1 ≤ 1
2 , then

P1 =
2

w1w2w3

∫ w1−w2
2

0
dz

∫ z+
w2
2

z
(x− z)dx+

2

w1w2w3

∫ w3
2

w1−w2
2

dz

∫ w1
2

z
(x− z)dx

+
1

w1w3

∫ w1−w2
2

0
dz

∫ w1
2

z+
w2
2

dx =
w2

4w1w3

∫ w1−w2
2

0
dz +

1

w1w2w3

∫ w3
2

w1−w2
2

(w1

2
− z

)2
dz

+
1

w1w3

∫ w1−w2
2

0

(
w1 − w2

2
− z

)
dz =

w1 − w2

8w3
+

w2
2

24w1w3
− w2

1

24w2w3
+

w1 − w3

8w2
+

w2
3

24w1w2
.

Therefore, if w1 >
1
2 , then

P (w1, w2, w3) =
3w2

2 − 3w2w3 + 2w2
3

24w1w2
+

2w1 − w2 − w3

8w1
=

1

4
− w3

4w1
+

w2
3

12w1w2
,

else

P (w1, w2, w3) =
3w2

2 − 3w2w3 + 2w2
3

24w1w2
+

w1 − w2

8w3
+

w2
2

24w1w3
− w2

1

24w2w3
+

w1 − w3

8w2
+

w2
3

24w1w2

=
w1 − w2

8w3
+

w1 − w3

8w2
+

w2 − w3

8w1
− w2

1

24w2w3
+

w2
2

24w1w3
+

3w2
3

24w1w2
.

Consider the case v[1] >
1
2 . As before, let w1 ≥ w2 ≥ w3.

i) If v[1] = v1, then the probability of majority inversion

P (w1, w2, w3) = 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (−1

2 , 0), x3 ∈ (−1
2 , 0)

)
(P ′

1)

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (−1

2 , 0), x3 ∈ (0, 12)
)

(P ′
2)

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (0, 12), x3 ∈ (−1

2 , 0)
)
. (P ′

3)

Thus, P ′
2 = P2, P

′
3 = P3. For P

′
1, we have

P ′
1 =

2

w1w2w3

∫ ∫ ∫
A

dxdydz,

where A = {(x, y, z) : x ∈ (0, w1
2 ), y ∈ (0, w2

2 ), z ∈ (0, w3
2 ), x < y + z}. Since P ′

1 =
1
4 − P1,

P (w1, w2, w3) =
w2

4w1
+

w2
3

12w1w2
for w1 >

1

2
,

P (w1, w2, w3) =
1

4
− w1 − w2

8w3
− w1 − w3

8w2
+

w2 − w3

8w1
+

w2
1

24w2w3
− w2

2

24w1w3
+

w2
3

24w1w2
for w1 ≤

1

2
.
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ii) If v[1] = v2, then the probability of majority inversion

P (w1, w2, w3) = 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (−1

2 , 0), x2 ∈ (0, 12), x3 ∈ (0, 12)
)

(P ′′
1 )

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (−1

2 , 0), x2 ∈ (0, 12), x3 ∈ (−1
2 , 0)

)
(P ′′

2 )

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (0, 12), x3 ∈ (−1

2 , 0)
)
. (P ′′

3 )

Here P ′′
1 = P1, P

′′
2 = 1

4 − P2, P
′′
3 = P3. Therefore,

P (w1, w2, w3) =
1

2
− w2

4w1
for w1 >

1

2
,

P (w1, w2, w3) =
1

4
+

w1 − w2

8w3
+

w1 − w3

8w2
− w2 − w3

8w1
− w2

1

24w2w3
+

w2
2

24w1w3
+

w2
3

24w1w2
for w1 ≤

1

2
.

iii) If v[1] = v3, then the probability of majority inversion

P (w1, w2, w3) = 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (−1

2 , 0), x2 ∈ (0, 12), x3 ∈ (0, 12)
)

(P ′′′
1 )

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, 12), x2 ∈ (−1

2 , 0), x3 ∈ (0, 12)
)

(P ′′′
2 )

+ 2P
(
w1x1 + w2x2 + w3x3 < 0, x1 ∈ (−1

2 , 0), x2 ∈ (−1
2 , 0), x3 ∈ (0, 12)

)
. (P ′′′

3 )

Here P ′′′
1 = P1, P

′′′
2 = P2, P

′′′
3 = 1

4 − P3. Thus,

P (w1, w2, w3) =
1

2
− w3

4w1
for w1 >

1

2
,

P (w1, w2, w3) =
1

4
+

w1 − w2

8w3
+

w1 − w3

8w2
+

w2 − w3

8w1
− w2

1

24w2w3
+

w2
2

24w1w3
+

w2
3

24w1w2
for w1 ≤

1

2
.

B Proof of Theorem 2 (Schur-convexity)

Assume for simplicity that w1 ≥ w2 ≥ w3. To prove that P (w1, w2, w3) is Schur-convex, we use
Lemma 1 to show that

a). P (w1, w2 + ε, w3 − ε) is an increasing function of ε in 0 ≤ ε ≤ min{w1 − w2, w3};

b). P (w1 + ε, w2 − ε, w3) is an increasing function of ε in 0 ≤ ε ≤ w2 − w3.

Part a).
If w1 > w2 + w3, then

P (w1, w2 + ε, w3 − ε) =
1

4
− w3 − ε

4w1
+

(w3 − ε)2

12w1(w2 + ε)
,

and the derivative

dP (w1, w2 + ε, w3 − ε)

dε
=

1

12w1

(
4− (w2 + w3)

2

(w2 + ε)2

)
> 0.

The inequality follows since w2+w3
w2+ε < 2 due to w2 − w3 + 2ε > 0.
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If w1 ≤ w2 + w3, then from

P (w1, w2 + ε, w3 − ε) =
w1 − w2 − ε

8(w3 − ε)
+

w1 − w3 + ε

8(w2 + ε)
+

w2 − w3 + 2ε

8w1

− w2
1

24(w2 + ε)(w3 − ε)
+

(w2 + ε)2

24w1(w3 − ε)
+

3(w3 − ε)2

24w1(w2 + ε)

we obtain

24w1P (w1, w2 + ε, w3 − ε) = 6w1 − 2w2 − 10w3 + 8ε+
3w1(w1 − w2 − w3) + (w2 + w3)

2 − w3
1

w2+w3

w3 − ε

+
3w1(w1 − w2 − w3) + 3(w2 + w3)

2 − w3
1

w2+w3

w2 + ε
,

and the derivative

24w1
dP (w1, w2 + ε, w3 − ε)

dε
= 8 +

3w1(w1 − w2 − w3) + (w2 + w3)
2 − w3

1
w2+w3

(w3 − ε)2

−
3w1(w1 − w2 − w3) + 3(w2 + w3)

2 − w3
1

w2+w3

(w2 + ε)2
.

The expression in the numerator of the first fraction is non-negative:

3w1(2w1 − 1) + (1− w1)
2 − w3

1

1− w1
=

(1− 2w1)
3

1− w1
≥ 0.

Therefore,

24w1
dP (w1, w2 + ε, w3 − ε)

dε
≥ 8 +

3w1(w1 − w2 − w3) + (w2 + w3)
2 − w3

1
w2+w3

(w2 + ε)2

−
3w1(w1 − w2 − w3) + 3(w2 + w3)

2 − w3
1

w2+w3

(w2 + ε)2
= 8− 2(w2 + w3)

2

(w2 + ε)2
> 0.

Part b).
If w1 + 2ε > w2 + w3, then

P (w1 + ε, w2 − ε, w3) =
1

4
− w3

4(w1 + ε)
+

w2
3

12(w1 + ε)(w2 − ε)
,

and
dP (w1 + ε, w2 − ε, w3)

dε
=

w3

4(w1 + ε)2
+

w2
3(w1 − w2 + 2ε)

12(w1 + ε)2(w2 − ε)2
≥ 0.

If w1 + 2ε ≤ w2 + w3, then

P (w1 + ε, w2 − ε, w3) =
w1 − w2 + 2ε

8w3
+

w1 − w3 + ε

8(w2 − ε)
+

w2 − w3 − ε

8(w1 + ε)

− (w1 + ε)2

24(w2 − ε)w3
+

(w2 − ε)2

24(w1 + ε)w3
+

3w2
3

24(w1 + ε)(w2 − ε)
.
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Consequently,

24w3P (w1 + ε, w2 − ε, w3) = 4w1 − 4w2 − 6w3 + 8ε+
3w3(w1 + w2 − w3) +

3w3
3

w1+w2
− (w1 + w2)

2

w2 − ε

+
3w3(w1 + w2 − w3) +

3w3
3

w1+w2
+ (w1 + w2)

2

w1 + ε
.

The derivative

24w3
dP (w1 + ε, w2 − ε, w3)

dε
= 8 +

3w3(w1 + w2 − w3) +
3w3

3
w1+w2

− (w1 + w2)
2

(w2 − ε)2

−
3w3(w1 + w2 − w3) +

3w3
3

w1+w2
+ (w1 + w2)

2

(w1 + ε)2

= 8− 2(w1 + w2)
2

(w2 − ε)2
+A

(
1

(w2 − ε)2
− 1

(w1 + ε)2

)
,

where A = 3w3(1− 2w3) +
3w3

3
1−w3

+ (1− w3)
2. We show that

A
(w1 − w2 + 2ε)(w1 + w2)

(w1 + ε)2(w2 − ε)2
≥ 2

[(
w1 + ε

w2 − ε
+ 1

)2

− 22

]
=

2(w1 − w2 + 2ε)(w1 + 3w2 − 2ε)

(w2 − ε)2
,

or, equivalently,

2(w2 − ε)2(3(1− w3)− 2(w2 − ε)) ≥ 1− 6w3 + 12w2
3 − 10w3

3.

The expression on the left-hand side is not smaller than 4(12−w3)
2(1−w3) since w2−ε ≥ 1

2−w3,
2(w2− ε) ≤ 1−w3. But 4(

1
2 −w3)

2(1−w3) = 1− 5w3+8w2
3 − 4w3

3 ≥ 1− 6w3+12w2
3 − 10w3

3, as
(1−5w3+8w2

3−4w3
3)−(1−6w3+12w2

3−10w3
3) = w3(1−4w3+6w2

3) = w3((1−2w3)
2+2w2

3) ≥ 0.

C The upper bound on the probability for EC

Again, assume w1 ≥ w2 ≥ w3. In part b) of Appendix B we have established that the function
P (w1 + ε, w2 − ε, w3) is increasing of ε in 0 ≤ ε ≤ w2 − w3 for EC if w1 + 2ε ≤ w2 + w3. For
EC, we show that if w1 +2ε > w2 +w3, the function P (w1 + ε, w2 − ε, w3) is decreasing in ε for
0 ≤ ε ≤ w2 − w3. Indeed,

P (w1 + ε, w2 − ε, w3) =
w2 − ε

4(w1 + ε)
+

w2
3

12(w1 + ε)(w2 − ε)

implies
dP (w1 + ε, w2 − ε, w3)

dε
=

(w1 − w2 + 2ε)w2
3 − 3(w1 + w2)(w2 − ε)2

12(w1 + ε)2(w2 − ε)2
.

Denote X = w2−ε. Let us show that 3(w1+w2)X
2+2w2

3X− (w1+w2)w
2
3 > 0 for X ∈ [w3, w2].

The roots X1,2 of the quadratic are

X1,2 =
−w2

3 ±
√

w4
3 + 3(w1 + w2)2w2

3

3(w1 + w2)
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with the largest root being smaller than w3. It follows that w
∗
1 = 1

2 maximizes P (w1, w2, w3).
The function

P

(
1

2
, w2,

1

2
− w2

)
=

w2

2
+

(12 − w2)
2

6w2
,

1

4
≤ w2 ≤

1

2

is increasing in w2, and so it is maximized for w∗
2 = 1

2 , because

dP (12 , w2,
1
2 − w2)

dw2
=

2

3
− 1

24w2
2

=
2

3

(
1− 1

16w2
2

)
> 0 for w2 >

1

4
.

Consequently, argmax
(w1,w2,w3)

P (w1, w2, w3) = (12 ,
1
2 , 0) and max

(w1,w2,w3)
P (w1, w2, w3) =

1
4 .
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