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Abstract

We compute the minimum and maximum of the probability of k or more successes in n
exchangeable Bernoulli trials as a function of the correlation coefficients. This probability
finds wide application in reliability and decision theory. Since the probability is linear in
the coefficients, finding the minimum and maximum requires solving linear programming
problems. We show that the maximum can be lower than certainty (no certain success),
whereas the minimum can be higher than zero (positive residual risk).
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1 Introduction

We use the parametrizations of the joint probability distribution of exchangeable Bernoulli
random variables by Bahadur (1961) and George and Bowman (1995) to compute the minimum
and maximum of the probability of k or more successes in n exchangeable Bernoulli trials as a
function of correlation coefficients. In doing so we characterize the distributions corresponding
to the minimum and maximum, which may not be unique. Since the probability is linear in the
coefficients, finding the minimum and maximum requires solving linear programming problems
with constraints imposed by the non-negativity of the joint distribution.

The probability of k or more successes in n binary trials plays an important role in the
reliability of k-out-of-n systems, and our presentation will focus on this application. A k-out-
of-n system consists of n components, such that each component is either functioning, or it has
failed. The reliability of a system is defined as the probability that the system will function.
Factors that may lead to dependent component performance include the influence of a common
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operating environment, and the fact that failure of one component may increase the strain on
the remaining components, leading to the failure cascades (Lindley and Singpurwalla 2002). For
a survey, see Hsieh (2003). The reliability of a consecutive k-out-of-n system with exchangeable
components has been computed in Eryilmaz and Demir (2007).

The same probability finds an application in decision theory. The literature on Condorcet’s
Jury Theorem studies the expertise of a group of experts. The experts cast their vote in favor of
one of two alternatives. Individual votes are aggregated into a collective judgment using a voting
rule k, for example simple majority rule: k = (n + 1)/2 for odd n. Stochastic independence
cannot be reconciled with commonalities and differences in experts’ preferences, information
asymmetries and strategic behavior, as these factors will induce correlations between the votes.
Recent literature studies the probability of the correct decision in the case of correlated votes.
For a survey, see Kaniovski and Zaigraev (2009).

Exchangeability imposes a dependence structure that is a) analytically tractable, and b) can
be maintained on a priori grounds in the absence of specific knowledge about the numerous
mixed moments of the joint distribution.

2 Notation and preliminaries

Two commonly studied k-out-of-n systems are the G system and the F system. A k-out-of-n:G
system functions if k or more of its components function, whereas a k-out-of-n:F system fails
if at least k components fail. A k-out-of-n:F is therefore equivalent to an n − k + 1-out-of-n:G
system.

Let component i’s state be a realization xi of a Bernoulli random variable Xi, such that

xi =

{

1 if component i functions;
0 if component i fails.

The reliability of i’s component is measured by its probability of being functional pi = P (Xi = 1).
A vector of states x = (x1, . . . , xn) is called a system profile. There will be 2n such profiles.

The structure function of a k-out-of-n:G system is given by

φ(x) =

{

1 if
∑n

i=1 xi ≥ k;
0 if

∑n
i=1 xi < k.

Let πx be the probability of occurrence of x, and t(x) = n −
∑n

i=1 xi be the number of failing
components. The reliability of such a system can be defined as

Rk
n,p = E[φ(X)] = P (φ(X) = 1) =

n−k
∑

i=0

π
x:t(x)=i, where 1 ≤ k ≤ n, (1)

and E denotes the expected value.
Bahadur (1961) proved that πx is uniquely determined by n marginal probabilities and

2n − n − 1 correlation coefficients, defined as:

order 2 ci,j = E[ZiZj] for all 1 ≤ i < j ≤ n;

order 3 ci,j,r = E[ZiZjZr] for all 1 ≤ i < j < r ≤ n;

. . .

order n c1,2,...,n = E[Z1Z2 . . . Zn],
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where Zi = (Xi − pi)/
√

pi(1 − pi) for i = 1, 2, . . . , n.
A sequence of random variables is exchangeable if the joint probability distribution is in-

variant under the permutation of its arguments. The sequence of binary random variables
X1,X2, . . . ,Xn is exchangeable if

P (X1 = x1, . . . ,Xr = xr) = P (Xσ(1) = x1, . . . ,Xσ(r) = xr)

for any 1 ≤ r ≤ n, and any permutation σ = (σ(1), . . . , σ(r)) of the indices {1, 2, . . . , r}. In
this case πx depends on the total number of failing components, not on their order. Since their
number ranges from 0 to n, there can be at most n+1 distinct probabilities, so that (1) becomes

Rk
n,p =

n−k
∑

i=0

Ci
nπi. (2)

Exchangeability requires the equality of the marginal probabilities and the equality of all
correlation coefficients of the same order. We thus define the correlation coefficient of the i-th
order as

ci =
E[(X1 − p) . . . (Xi − p)]

√

pi(1 − p)i
for i = 2, 3, . . . , n.

The assumption of exchangeability constrains the correlation coefficients to ensure non-negativity
of the probability. These constraints are not known in general. Bounds on c2 when c3 = c4 =
· · · = cn = 0 are given in Bahadur (1961) and Kaniovski and Zaigraev (2009), and illustrated in
Stefanescu and Turnbull (2003). Bahadur’s parametrization for exchangeable random variables
is given in Zaigraev and Kaniovski (2009).

In this paper, we use a more compact parametrization by George and Bowman (1995). Let
λi = P (X1 = 1,X2 = 1, . . . ,Xi = 1), i = 1, 2, . . . , n (of course, λ1 = p), and λ0 = 1. Then,

πi =

i
∑

j=0

(−1)jCj
i λn−i+j = ∆i(λn−i), (3)

where Ci
n denotes the binomial coefficient, and ∆i(λn−i) denotes the i-th finite difference of

λn−i. The correlation coefficients can then be recovered as

ci =

∑i−2
j=0(−1)jCj

i p
jλi−j + (−1)i−1(i − 1)pi

√

pi(1 − p)i
for i = 2, 3, . . . , n. (4)

The equivalence of the two parametrizations allows us to switch between a representation of the
joint distribution of n exchangeable binary variables with the marginal p in terms of c2, . . . , cn

and λ2, . . . , λn. We shall use this fact in proving our theorem.
Since the correlation coefficients enter Rk

n,p linearly, and the non-negativity of the probabili-
ties πi imposes n+1 linear constraints, finding correlation coefficients that minimize or maximize
Rk

n,p for given n and p requires to solving the following linear programming problems:

Rk
n,p(c2, . . . , cn) = Rk

n,p(λ2, λ3, . . . , λn) → min subject to πi ≥ 0, i = 0, 1, . . . , n; (5)

Rk
n,p(c2, . . . , cn) = Rk

n,p(λ2, λ3, . . . , λn) → max subject to πi ≥ 0, i = 0, 1, . . . , n. (6)
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The above problems can be written in the standard form as:

a
T
λ → min subject to Aλ ≤ b; (7)

a
T
λ → max subject to Aλ ≤ b, (8)

where λ = (λ2, . . . , λn), a ∈ R
n−1, b ∈ R

n+1 and A ∈ R
n+1 × R

n−1; and in the dual form as:

b
T
θ → min subject to A

T
θ = −a, θi ≥ 0, i = 0, 1, . . . , n; (9)

b
T
θ → min subject to A

T
θ = a, θi ≥ 0, i = 0, 1, . . . , n. (10)

The Duality Theorem says that if λ
∗ and θ

∗ are the solutions of the primal Problem (7) and
the corresponding dual Problem (9), then a

T
λ
∗ = −b

T
θ
∗; while if λ

∗ and θ
∗ are the solutions

of the primal Problem (8) and the corresponding dual Problem (10), then a
T
λ
∗ = b

T
θ
∗.

The above primal linear programming problems involve n−1 variables and n+1 constraints.
Typically, problems of this size can only be solved numerically. A closer look at the dual problems
reveals, however, that the solutions of the primal problems satisfy the systems of linear equations
formed by vanishing probabilities.

3 The theorem

Theorem. Let Rk
n,p be the probability of at least k successes in n exchangeable Bernoulli trials

having marginal probability p. Then,

max

{

np − k + 1

n − k + 1
, 0

}

≤ Rk
n,p ≤ min

{np

k
, 1

}

.

Proof: See Appendix.
The Theorem finishes the bounds on the reliability of a k-out-of-n:G system. Analogous

bounds for a k-out-of-n:F system are obtained by substituting n − k + 1 for k. The validity
of the theorem can be illustrated on the special cases of a series (k = n) and a parallel system
(k = 1). The reliability of a series G-system with exchangeable components cannot exceed that
of a single component p, whereas the reliability of a parallel G-system cannot be lower than p.
The opposite holds for series and parallel F -systems. Indeed, substituting k = n or k = 1 gives

max {1 − n(1 − p), 0} ≤ Rn
n,p ≤ p; (n-out-of-n:G)

p ≤ R1
n,p ≤ min {np, 1} ; (1-out-of-n:G)

p ≤ Rn
n,p ≤ min {np, 1} . (n-out-of-n:F )

max {1 − n(1 − p), 0} ≤ R1
n,p ≤ p. (1-out-of-n:F )

Figure 1 illustrates how minRk
n,p and max Rk

n,p vary in k for a given n and p.
In the proof of the Theorem, we express the solutions of the linear programming problems

in terms of probabilities {πi}. Alternatively, we can use (3) and (4) to express the solutions in
terms of the probabilities λ2, λ3, . . . , λn, or the correlation coefficients c2, c3, . . . , cn.
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Figure 1: minRk
n,p and max Rk

n,p as functions of k

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G system

k

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F system

k

For n = 21, p = 0.5 (bullet) and p = 0.9 (circle).

A Proofs

Proof. Minimum. In Problems (7) and (8), the objective function Rk
n,p and the vector a will

be different depending on whether k = 1, or k ≥ 2, whereas in dual Problems (9) and (10),
b = (0, . . . , 0, p, 1 − np)T , and

A
T =













0 0 0 . . . −1 C1
n−1 −C2

n

0 0 0 . . . C1
n−2 −C2

n−1 C3
n

. . . . . . . . . . . . . . . . . . . . .

0 −1 2 . . . (−1)nCn−3
n−2 (−1)n−1Cn−2

n−1 (−1)nCn−1
n

−1 1 −1 . . . (−1)n−1 (−1)n (−1)n−1













.

In each case, we use (3) to express Rk
n,p in terms of λ.

Case 1: k = 1. We have,

R1
n,p(λ2, λ3, . . . , λn) = 1 − πn = np +

n
∑

j=2

(−1)j+1Cj
nλj = np +

n
∑

j=2

ajλj,

where aj = (−1)j+1Cj
n, j = 2, 3, . . . , n. The solution to the system of equations A

T
θ = −a is

θi = Ci
n−1θn−1 − (n − 1 − i)Ci

nθn − (n − 1 − i)Ci
n, for i = 0, . . . , n − 2,

whereby the set of constraints A
T
θ = −a, θi ≥ 0, i = 0, 1, . . . , n, becomes

Ci
n−1θn−1 − (n − 1 − i)Ci

nθn − (n − 1 − i)Ci
n ≥ 0, for i = 0, . . . , n − 2, θn−1 ≥ 0, θn ≥ 0.
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For the above constraints to hold, it suffices that θ0 ≥ 0 and θn ≥ 0. Consequently, the solutions
of dual Problem (9) coincide with the solutions of the following simpler problem:

b
T
θ = pθn−1 + (1 − np)θn → min subject to θn−1 − (n − 1)θn − (n − 1) ≥ 0, θn ≥ 0,

whose solution (θ∗n−1, θ
∗
n) lies on the vertex defined by θn−1−(n−1)θn−(n−1) = 0, and θn = 0.

Since pθ∗n−1 + (1 − np)θ∗n = (n − 1)p at (θ∗n−1, θ
∗
n) = (n − 1, 0), we have

min
λ2,λ3,...,λn

R1
n,p(λ2, λ3, . . . , λn) = np − (n − 1)p = p.

The solution is given by π0 = p, π1 = 0, . . . , πn−1 = 0, πn = 1 − p.
Case 2: k ≥ 2. In this case, we have

Rk
n,p(λ2, λ3, . . . , λn) =

n−k
∑

i=0

Ci
n

i
∑

j=0

(−1)jCj
i λn−i+j =

n
∑

i=2

aiλi,

where a2 = · · · = ak−1 = 0, ak+i = (−1)iCn−k−i
n Ci

k−1+i for i = 0, 1, . . . , n − k.

The solution to the system of equations A
T
θ = −a is

θi = Ci
n−1θn−1 − (n − 1 − i)Ci

nθn + Ci
n, for i = 0, . . . , n − k;

θi = Ci
n−1θn−1 − (n − 1 − i)Ci

nθn, for i = n − k + 1, . . . , n − 2.

Therefore, the set of constraints A
T
θ = −a, θi ≥ 0 for i = 0, 1, . . . , n, becomes

Ci
n−1θn−1 − (n − 1 − i)Ci

nθn + Ci
n ≥ 0, for i = 0, . . . , n − k;

Ci
n−1θn−1 − (n − 1 − i)Ci

nθn ≥ 0, for i = n − k + 1, . . . , n − 2;

θn−1 ≥ 0 and θn ≥ 0.

For them to hold, it suffices that θ0 ≥ 0, θn−k+1 ≥ 0, and θn ≥ 0. Consequently, the solutions
of dual Problem (9) coincide with the solutions of the problem:

b
T
θ = pθn−1 + (1 − np)θn → min subject to

θn−1 − (n − 1)θn + 1 ≥ 0;

Cn−k+1
n−1 θn−1 − (k − 2)Cn−k+1

n θn ≥ 0;

θn ≥ 0.

Case 2a: p < k−1
n

. The function b
T
θ attains a minimum at (θ∗n−1, θ

∗
n) = (0, 0) and

pθ∗n−1 + (1 − np)θ∗n = 0. Therefore, minλ2,λ3,...,λn
Rk

n,p(λ2, λ3, . . . , λn) = 0, and π0 = 0, . . . ,
πn−k = 0, πn−k+1 ≥ 0, . . . , πn ≥ 0.

Case 2b: p = k−1
n

. The function b
T
θ attains a minimum at any (n(k−2)

k−1 θn, θn), where θn ∈

[0, k−1
n−k+1 ], and at those points pθn−1+(1−np)θn = 0. Thus, minλ2,λ3,...,λn

Rk
n,p(λ2, λ3, . . . , λn) =

0. If θn ∈ (0, k−1
n−k+1 ], then πn−k+1 = 1

Cn−k+1
n

, whereas the remaining πi’s vanish. If θn = 0, then

π0 = 0, . . . , πn−k = 0, πn−k+1 ≥ 0, . . . , πn ≥ 0.

Case 2c: p > k−1
n

. The function b
T
θ attains a minimum at (θ∗n−1, θ

∗
n) = (n(k−2)

n−k+1 , k−1
n−k+1)

and pθ∗n−1 + (1 − np)θ∗n = k−1−np
n−k+1 . Therefore, minλ2,λ3,...,λn

Rk
n,p(λ2, λ3, . . . , λn) = np−k+1

n−k+1 . The

solution is given by π0 = np−k+1
n−k+1 , π1 = 0, . . . , πn−k = 0, πn−k+1 = 1−p

Cn−k

n−1

, πn−k+2 = 0, . . . , πn = 0.

Combining all these cases completes the proof for the minimum.
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Proof. Maximum. Problem (8) is solved in a similar manner. Switch to the solution of corre-
spondent dual Problem (10) and consider the system of equations A

T
θ = a.

Case 1: k = 1. Here, as in the first part, aj = (−1)j+1Cj
n, j = 2, 3, . . . , n. The solution to

the system of equations A
T
θ = a is

θi = Ci
n−1θn−1 − (n − 1 − i)Ci

nθn + (n − 1 − i)Ci
n, for i = 0, . . . , n − 2,

whereby the set of constraints A
T
θ = a, θi ≥ 0, i = 0, 1, . . . , n, becomes

Ci
n−1θn−1 − (n − 1 − i)Ci

nθn + (n − 1 − i)Ci
n ≥ 0, for i = 0, . . . , n − 2, θn−1 ≥ 0, θn ≥ 0.

For the above constraints to hold, it suffices that θ0 ≥ 0, θn−1 ≥ 0 and θn ≥ 0. Consequently,
the solutions of dual Problem (10) coincide with the solutions of the following simpler problem:

b
T
θ = pθn−1 + (1− np)θn → min subject to θn−1 − (n− 1)θn + (n − 1) ≥ 0, θn−1 ≥ 0, θn ≥ 0.

Case 1a: p < 1
n
. The function b

T
θ attains a minimum at (θ∗n−1, θ

∗
n) = (0, 0) and pθ∗n−1 +

(1 − np)θ∗n = 0. Therefore, maxλ2,λ3,...,λn
R1

n,p(λ2, λ3, . . . , λn) = np. The joint distribution is
given by: π0 = 0, . . . , πn−2 = 0, πn−1 = p, πn = 1 − np.

Case 1b: p = 1
n
. The function b

T
θ attains a minimum at any (0, θn), where θn ∈ [0, 1],

and at those points pθn−1 +(1−np)θn = 0. Therefore, maxλ2,λ3,...,λn
R1

n,p(λ2, λ3, . . . , λn) = 1. If

θn ∈ [0, 1), then πn−1 = 1
n
, whereas the remaining πi’s vanish. If θn = 1, then π0 ≥ 0, . . . , πn−1 ≥

0, πn = 0.
Case 1c: p > 1

n
. The function b

T
θ attains a minimum at (θ∗n−1, θ

∗
n) = (0, 1) and pθ∗n−1 +

(1− np)θ∗n = 1− np. Therefore, maxλ2,λ3,...,λn
R1

n,p(λ2, λ3, . . . , λn) = 1. The joint distribution is
given by: π0 ≥ 0, . . . , πn−1 ≥ 0, πn = 0.

Case 2: k ≥ 2. In this case, as in the first part, a2 = · · · = ak−1 = 0, ak+i =
(−1)iCn−k−i

n Ci
k−1+i for i = 0, 1, . . . , n − k. The solution to the system of equations A

T
θ = a is

θi = Ci
n−1θn−1 − (n − 1 − i)Ci

nθn − Ci
n, for i = 0, . . . , n − k;

θi = Ci
n−1θn−1 − (n − 1 − i)Ci

nθn, for i = n − k + 1, . . . , n − 2.

Therefore, the set of constraints A
T
θ = a, θi ≥ 0 for i = 0, 1, . . . , n, becomes

Ci
n−1θn−1 − (n − 1 − i)Ci

nθn − Ci
n ≥ 0, for i = 0, . . . , n − k;

Ci
n−1θn−1 − (n − 1 − i)Ci

nθn ≥ 0, for i = n − k + 1, . . . , n − 2;

θn−1 ≥ 0 and θn ≥ 0.

For them to hold, it suffices that θ0 ≥ 0, θn−k ≥ 0, and θn ≥ 0. Consequently, the solutions of
dual Problem (10) coincide with the solutions of the problem:

b
T
θ = pθn−1 + (1 − np)θn → min subject to

θn−1 − (n − 1)θn − 1 ≥ 0;

Cn−k
n−1 θn−1 − (k − 1)Cn−k

n θn − Cn−k
n ≥ 0;

θn ≥ 0.

Case 2a: p < k
n
. The function b

T
θ attains a minimum at (θ∗n−1, θ

∗
n) = (n

k
, 0) and pθ∗n−1+(1−

np)θ∗n = np
k

. Therefore, maxλ2,λ3,...,λn
Rk

n,p(λ2, λ3, . . . , λn) = np
k

. In terms of the joint probability

7



distribution the solution can be written as: π0 = 0, . . . , πn−k−1 = 0, πn−k = p

Cn−k

n−1

, πn−k+1 =

0, . . . , πn−1 = 0, πn = 1 − np
k

.

Case 2b: p = k
n
. The function b

T
θ attains a minimum at any (n(k−1)

k
θn + n

k
, θn), where

θn ∈ [0, 1], and at those points pθn−1+(1−np)θn = 1. Thus, maxλ2,λ3,...,λn
Rk

n,p(λ2, λ3, . . . , λn) =

1. If θn ∈ [0, 1), then πn−k = 1
Cn−k

n

, whereas the remaining πi’s vanish. If θn = 1, then

π0 ≥ 0, . . . , πn−k ≥ 0, πn−k+1 = 0, . . . , πn = 0.
Case 2c: p > k

n
. The function b

T
θ attains a minimum at (θ∗n−1, θ

∗
n) = (n, 1) and pθ∗n−1+(1−

np)θ∗n = 1. Therefore, maxλ2,λ3,...,λn
Rk

n,p(λ2, λ3, . . . , λn) = 1. In terms of the joint probability
distribution the solution can be written as: π0 ≥ 0, . . . , πn−k ≥ 0, πn−k+1 = 0, . . . , πn = 0.

Combining all these cases completes the proof for the maximum.
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