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Abstract

We study optimal research and extraction policies in an endogenous growth model
in which both production and research require an exhaustible resource. It is shown
that optimal growth is not sustainable if the accumulation of knowledge depends
on the resource as an input, or if the returns to scale in research are decreasing,
or the economy is too small. The model is stated as an infinite-horizon optimal
control problem with an integral constraint on the control variables. We consider
the main mathematical aspects of the problem, establish an existence theorem and
derive an appropriate version of the Pontryagin maximum principle. A complete
characterization of the optimal transitional dynamics is given.
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1 Introduction

Endogenous growth theory identifies technological progress as a means of sustaining eco-
nomic growth despite the reliance on exhaustible resources as inputs to production. The
supply of an exhaustible resource may limit growth, unless the economy can either sub-
stitute away from the resource or increase the efficiency of the resource’s use to offset its
scarcity. Can an optimal research and extraction policy compensate the negative effects
on production (consumption) that arise due to scarcity of the exhaustible resource?

Existing literature in the tradition of Dasgupta-Heal-Solow-Stiglitz [9, 24] offers an
affirmative answer in a scenario in which production requires the resource but the accu-
mulation of knowledge does not. Our point of departure is the ‘toy economy’ model by
Charles Jones [18], as one of the simplest models of endogenous growth. We show that
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resource-dependency may preclude perpetual growth along a welfare-maximizing output
trajectory if technical progress depends on the resource, or, as was advocated by Jones
in [17, 18], technical progress shows weak scale effects, or the economy is too small. The
possibility of the research sector being dependent on an exhaustible resource challenges
the feasibility of perpetual growth, while the strong scale condition seems less profound in
view of many existing models that obtain balanced positive growth without it, see [21,27].
The minimum size condition is the least restrictive of all conditions.

We thus show that welfare-maximizing growth can be either perpetual or transient,
and derive optimal research and extraction policies in each scenario. Perpetual growth is
balanced and the optimal research policy allocates a constant fraction of the labor force
to research. Perpetual growth is feasible even in the absence of population growth and is
thus fully-endogenous. Perpetual growth becomes unfeasible if technical progress requires
the resource or has weak scale effects. In this more realistic scenario it is optimal to pursue
a certain ratio of the knowledge to the resource stock. In the resulting ‘rise and decline’
scenario output grows initially but stagnates and eventually declines following stagnation
of the knowledge stock. In either scenario it is optimal to deplete the resource according
to the well-known Hotelling rule.

The model is formulated as an infinite-horizon optimal control problem whose solution
is a welfare-maximizing dynamic research and extraction policy. The model includes an
integral constraint (in L1-space) associated with a finite stock of an exhaustible resource.
Such integral constraints on control (policy) variables are the defining feature of a class
of models in the resource and growth literature (see examples in [26]).

Due to the unbounded nature of controls corresponding to the extraction policy, we
cannot directly appeal to the standard results on existence of an optimal control in the
class of locally bounded measurable functions (such results usually rely on pointwise
boundedness conditions; see, for example, [8]). We overcome this difficulty by reducing
our problem to one without integral constraints. This allows us to prove an existence result
and apply a version of the Pontryagin maximum principle for problems with a dominating
discount developed in [3, 4] to fully characterize the optimal transitional dynamics.

The infinite time horizon gives rise to specific mathematical features of the Pontryagin
maximum principle [19]. The most characteristic feature is that the standard transver-
sality conditions may fail (see examples in [4, 12, 23]). There exist modifications of the
Pontryagin maximum principle that pay attention to this phenomenon [3–6,22]. Yet our
problem fails to satisfy the assumptions imposed in them due to the integral constraint.

When the Hamiltonian is concave, some infinite horizon problems can be solved by
means of well-known sufficient conditions [2,22]. This is a standard way of solving many
optimal economic growth problems (see [1]). Nevertheless, even in our simple model the
concavity of the Hamiltonian cannot be asserted for all relevant parameter values.

In this paper we follow the more general approach based on necessary conditions and
an existence theorem. It should be stressed that without an existence theorem one cannot
be sure that a path satisfying the necessary conditions exists, or that one of the paths
satisfying the necessary conditions is indeed a solution (see the discussion in [20]).
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2 The model

In the following two-sector endogenous growth model the production sector yields output
that is consumed, while the research sector augments the productivity of the production
means. Both sectors require an exhaustible resource as an input. There are constant
returns to scale in production, and either weak or strong scale effects in the research
sector.

At every instant t ∈ [0,∞), the economy produces output Y (t) > 0, which is assumed
to be described by a Cobb–Douglas production function:

Y (t) = A(t)κ[L − LA(t)]αR1(t)
1−α where α ∈ (0, 1) and κ > 0. (1)

Here A(t) > 0 is the current knowledge stock and R1(t) > 0 is the quantity of the
exhaustible resource used in production. The population (total labor supply) is fixed at
L > 0. Part of the labor L − LA(t) is employed in production, while the other part
LA(t) ∈ [0, L) is allocated to research.

The amount of new knowledge produced at time t depends on the hitherto accumulated
knowledge, the number of researchers and the portion of the exhaustible resource used in
research:

Ȧ(t) = A(t)θ[LA(t)]ηR2(t)
1−η where η ∈ (0, 1] and θ ∈ (0, 1]. (2)

Here R2(t) ≥ 0 is the quantity of the exhaustible resource used in research; typically R2(t)
is small compared to R1(t). The initial knowledge stock is given by A(0) = A0 > 0. If
θ ∈ (0, 1), then growth rate of the knowledge stock decreases while the knowledge stock
expands. The case of θ < 0—when the expansion of knowledge is progressively more
difficult—has also been considered in the literature (see, e.g., [17]). Empirical evidence
supports the idea of weak scale effects, i.e. θ < 1, in the production of knowledge. We
retain θ = 1 as a special case of strong scale effects.

The fact that the stock of the exhaustible resource is finite imposes the following
integral constraint on the controls R1(·) and R2(·):

∫ ∞

0

[

R1(t) + R2(t)
]

dt ≤ S0, (3)

where S0 > 0 is the initial supply of the exhaustible resource.
The welfare is measured by a discounted logarithmic utility function, maximizing

which amounts to maximizing future growth rates. This leads to the following objective
functional for the economy (see (1)):

J(A(·), LA(·), R1(·)) =

∫ ∞

0

e−ρt
{

ln[Y (t)]
}

dt

=

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L − LA(t)] + (1 − α) lnR1(t)
}

dt,

where ρ > 0 is a subjective discount rate.
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Given the parameters θ ∈ (0, 1], α ∈ (0, 1), κ > 0, η ∈ (0, 1], ρ > 0, L > 0 and S0 > 0,
the optimization problem J(A(·), LA(·), R1(·)) → max, subject to equation (2) and the
resource constraint (3), can be formulated as the following infinite-horizon optimal control
problem (P):

Ȧ(t) = A(t)θ[LA(t)]ηR2(t)
1−η, (4)

LA(t) ∈ [0, L), R1(t) > 0, R2(t) ≥ 0,

∫ ∞

0

[

R1(t) + R2(t)
]

dt ≤ S0, (5)

A(0) = A0 > 0, (6)

J(A(·), LA(·), R1(·)) =

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L−LA(t)] + (1−α) lnR1(t)
}

dt → max .

(7)

The above formulation follows closely the model suggested in [Section 5.2.1, 11] by [11]
who characterized the steady-state solution. In this paper we offer a rigorous derivation of
the optimal solution, which will be a steady state only under certain ‘knife-edge’ conditions
that are unlikely to hold. These conditions are: the exhaustible resource is not an input
to the production of knowledge (η = 1), and the accumulation of knowledge has strong
scale effects (θ = 1) (see Section 6).

The main difference between our model and the model by Groth lies in the exclusion of
capital as a third factor input to production and a perpetual inventory equation describing
the evolution of the capital stock. A closer look of what essentially is Groth’s model in [7]
shows that knowledge and capital accumulation together lead (under some conditions) to
explosive growth. Reaching infinite output in finite time is not a reasonable feature for
an infinite time horizon growth model. We therefore exclude capital accumulation in our
present model, planning to return to the issue of the interplay of capital and knowledge
accumulation in future work.

Next, we introduce the basic elements of model in the terminology of optimal control
theory. By an admissible control w(·) : [0,∞) → R

3 in problem (P) we mean a triple
w(·) = (LA(·), R1(·), R2(·)), t ≥ 0, of (locally) bounded measurable functions LA(·), R1(·)
and R2(·) each of which is defined on the infinite half-open time interval [0,∞) and satisfies
the respective constraints in (5).

An admissible trajectory A(·) : [0, τ) → R
1, τ > 0, corresponding to an admissible

control w(·) is a (locally) absolutely continuous function A(·) which is a (Carathéodory)
solution (see [10]) of the differential equation (4) on some (finite or infinite) time interval
[0, τ), subject to the initial condition (6).

Due to (4) and the integral constraint in (5), for any admissible control w(·) =
(LA(·), R1(·), R2(·)) the corresponding admissible trajectory A(·) can be extended to the
whole infinite interval [0,∞). Consequently, in what follows, without loss of generality,
we always assume that any admissible trajectory A(·) is defined on [0,∞).

A pair (A(·), w(·)), where w(·) is an admissible control and A(·) is the corresponding
admissible trajectory, is called an admissible pair (or a process) in problem (P).

For any admissible pair (A(·), w(·)) the improper integral in (7) converges either to −∞
or to a finite real. Moreover, it is uniformly bounded from above; i.e., there is a number
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M ≥ 0 such that

sup
(A(·),w(·))

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L − LA(t)] + (1 − α) lnR1(t)
}

dt ≤ M, (8)

where the supremum is taken over all admissible pairs (A(·), w(·)).
Indeed, due to the integral constraint in (5), for any admissible control w(·) we have

∫ ∞

0

e−ρt ln R1(t) dt <

∫ ∞

0

e−ρtR1(t) dt < S0. (9)

Further, for an arbitrary admissible trajectory A(·) we have

A(t)θ ≤ A(t) + 1, t ≥ 0.

Then, due to (4), we obtain

d

dt
ln(A(t) + 1) =

Ȧ(t)

A(t) + 1
≤ LηR2(t)

1−η, t ≥ 0,

and hence

ln(A(t) + 1) ≤ ln(A0 + 1) + Lη

∫ t

0

R2(s)
1−η ds ≤ ln(A0 + 1) + Lη

∫ t

0

(1 + R2(s)) ds

< ln(A0 + 1) + Lη(t + S0), t ≥ 0. (10)

This inequality immediately implies the following inequality for an arbitrary admissible
trajectory A(·):

∫ ∞

0

e−ρt ln A(t) dt <

∫ ∞

0

e−ρt ln(A(t) + 1) dt <
ln(A0 + 1) + LηS0

ρ
+

Lη

ρ2
. (11)

Since LA(t) ∈ [0, L), t ≥ 0 (see (5)), inequalities (9) and (11) provide the following
uniform estimate for all control processes (A(·), w(·)):

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L − LA(t)] + (1 − α) lnR1(t)
}

dt

< κ
ln(A0 + 1) + LηS0

ρ
+

κLη

ρ2
+

α lnL

ρ
+ (1 − α)S0.

This furnishes the proof of inequality (8).
The uniform bound (8) allows us to define an optimal control w∗(·) : [0,∞) → R

3 in
problem (P) as a welfare-maximizing triple w∗(·) = (LA

∗ (·), R1∗(·), R2∗(·)) of dynamic labor
and extraction policies adopted in the research and production sectors. The corresponding
trajectory A∗(·) is an optimal admissible trajectory.

5



3 Reduction to a one-dimensional problem without

integral constraints

Let us introduce a new state variable x(·) : [0,∞) → R
1 and new control variables

u(·) : [0,∞) → (0,∞) and v(·) : [0,∞) → [0,∞) as follows:

x(t) =
S(t)1−η

A(t)1−θ
, u(t) =

R1(t)

S(t)
, v(t) =

R2(t)

S(t)
, t > 0. (12)

Here the state variable S(·) represents the current supply of the exhaustible resource.
This variable is a (Carathéodory) solution to the following Cauchy problem (for given
admissible controls R1(·) and R2(·)) on [0,∞):

Ṡ(t) = −R1(t) − R2(t), S(0) = S0. (13)

Note that the case η = θ = 1 is not excluded, although in this case the new variable
x(·) degenerates into a constant. This case can easily be analyzed directly, but we include
it in our general scheme to save the space. Below we show that for η = θ = 1 the
problem reduces to a zero-dimensional problem, i.e. to a problem in which the utility
function depends only on the controls and does not depend on the state variables (hence
the control variables take constant values maximizing the utility function at each moment
in time).

Note also that S(t) > 0 for all t > 0, so the quantities u(t) and v(t) are well defined
for all t > 0. Indeed, if S(τ) = 0 for some τ > 0, then S(t) = 0 for all t > τ and hence
R1(t) = R2(t) = 0 for t > τ , which is precluded by (5). Moreover, u(·) and v(·) are locally
bounded measurable functions since Ri(·), i = 1, 2, is locally bounded and measurable
and S(·) is positive and continuous.

Since x(·) is a (locally) absolutely continuous function, we can calculate its derivative
a.e. on [0,∞):

ẋ(t) = (1 − η)
Ṡ(t)

A(t)1−θS(t)η
− (1 − θ)

Ȧ(t)S(t)1−η

A(t)2−θ

= −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)
A(t)θ[LA(t)]ηR2(t)

1−ηS(t)1−η

A(t)2−θ

= −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2.

Thus, x(·) is a Carathéodory solution of the differential equation

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, t > 0, (14)

satisfying the initial condition

x(0) = x0 =
S1−η

0

A1−θ
0

. (15)

Now we express the functional J(A(·), LA(·), R1(·)) (see (7)) in terms of the new vari-
ables x(·), u(·) and v(·). Consider the first term in the integrand in (7):

∫ ∞

0

e−ρt ln A(t) dt =
ln A0

ρ
+

1

ρ

∫ ∞

0

e−ρt Ȧ(t)

A(t)
dt. (16)

6



This formula is valid for any admissible trajectory A(·) of problem (P). To show this, it
suffices first to integrate by parts on a finite time interval [0, T ] and then pass to the limit
as T → ∞:

∫ T

0

e−ρt ln A(t) dt =
ln A0 − e−ρT ln A(T )

ρ
+

1

ρ

∫ T

0

e−ρt Ȧ(t)

A(t)
dt. (17)

Due to (10) the integral on the left-hand side and the first term on the right-hand side
tend to the corresponding terms in (16). Further, Ȧ(t) ≥ 0, t > 0; therefore, e−ρtȦ(t)/A(t)
is integrable on [0, +∞) and the last term in (17) tends to the last term in (16).

Substituting Ȧ(t) from (4) into (16), we obtain
∫ ∞

0

e−ρt ln A(t) dt =
ln A0

ρ
+

1

ρ

∫ ∞

0

e−ρt A(t)θ[LA(t)]ηv(t)1−ηS(t)1−η

A(t)
dt

=
ln A0

ρ
+

1

ρ

∫ ∞

0

e−ρt[LA(t)]ηv(t)1−ηx(t) dt.

Similarly,
∫ T

0

e−ρt ln R1(t) dt =

∫ T

0

e−ρt
[

ln u(t) + ln S(t)
]

dt

=

∫ T

0

e−ρt ln u(t) dt +
ln S0 − e−ρT ln S(T )

ρ
+

1

ρ

∫ T

0

e−ρt Ṡ(t)

S(t)
dt

=
ln S0 − e−ρT ln S(T )

ρ
+

∫ T

0

e−ρt

[

ln u(t) −
u(t) + v(t)

ρ

]

dt.

Passing to the limit as T → ∞, we see that
∫ ∞

0

e−ρt ln R1(t) dt =
ln S0

ρ
+

∫ ∞

0

e−ρt

[

ln u(t) −
u(t) + v(t)

ρ

]

dt,

where both sides may be −∞.
Thus, multiplying J(A(·), LA(·), R1(·)) by ρ and neglecting constant terms, we arrive

at the functional

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ ln u(t) − (1 − α)[u(t) + v(t)]
}

dt. (18)

Now consider the following optimal control problem (P1) (see (14), (15) and (18)):

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, (19)

v(t) ∈ [0,∞), LA(t) ∈ [0, L), u(t) ∈ (0,∞), (20)

x(0) = x0,

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ lnu(t) − (1 − α)[u(t) + v(t)]
}

dt → max . (21)
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We say that a control w̃(·) = (LA(·), u(·), v(·)) : [0,∞) → [0, L) × (0,∞) × [0,∞) (which
is a triple of measurable functions) is admissible in problem (P1) if the functions u(·)
and v(·) are locally bounded. The corresponding trajectory x(·) : [0, τ) → R

1, τ > 0,
can obviously be extended to the whole infinite time interval [0,∞). So, without loss of
generality, we assume that any admissible trajectory x(·) is defined on [0,∞). A pair
(x(·), w(·)) where w(·) is an admissible control and x(·) is the corresponding trajectory is
called an admissible pair or a process in problem (P1).

Note that, structurally, problem (P1) is simpler than problem (P) because prob-
lem (P1) does not contain integral constraints on the control variables. Problem (P1)
is equivalent to problem (P) in the following sense:

Lemma 1. For fixed A0 and S0, there is a one-to-one correspondence between processes
(A(·), w(·)) in problem (P) and (x(·), w̃(·)) in problem (P1). Moreover, the corresponding
values of the objective functionals J(A(·), LA(·), R1(·)) and J1(x(·), LA(·), u(·), v(·)) are
related by a linear transformation of the form

J1(x(·), LA(·), u(·), v(·)) = ρJ(A(·), LA(·), R1(·)) + C, (22)

where C depends only on ρ, A0 and S0.

Proof. As shown above, any process (A(·), w(·)) = (A(·), LA(·), R1(·), R2(·)) in prob-
lem (P) generates a process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) in problem (P1), and
relation (22) is valid for these processes.

Now, we show that any control process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) in prob-
lem (P1) corresponds to a control process (A(·), w(·)) = (A(·), LA(·), R1(·), R2(·)) in prob-
lem (P). First, using the controls u(·) and v(·), we determine S(·) as a unique solution to
the Cauchy problem

Ṡ(t) = −[u(t) + v(t)]S(t), S(0) = S0.

Since u(·) + v(·) is positive and locally bounded, we obtain a positive monotonically
decreasing function S(·) defined on [0,∞). Then we define R1(t) = u(t)S(t) and R2(t) =
v(t)S(t), t ≥ 0, which are locally bounded and satisfy the integral constraint in (5).
Finally, we find A(·) as a unique solution to the Cauchy problem

d

dt

[

A(t)1−θ
]

= (1 − θ)[LA(t)]ηv(t)1−ηS(t)1−η, A(0) = A0

if θ < 1, or as a unique solution to the Cauchy problem

d

dt

[

ln A(t)
]

= [LA(t)]ηv(t)1−ηS(t)1−η, A(0) = A0

if θ = 1. This is certainly possible because the right-hand side of each of these equations
is positive and locally bounded.

We thus have a process (A(·), w(·)) = (A(·), LA(·), R1(·), R2(·)) in problem (P). Pass-
ing from this process (A(·), w(·)) in problem (P) back to some process (x1(·), w̃1(·)) in
problem (P1) along the scheme described at the beginning of this section, we see that
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w̃1(·) = w̃(·) and x1(·) satisfies the same Cauchy problem (14), (15) as x(·). There-
fore, by the uniqueness theorem for solutions of differential equations, x1(·) = x(·). This
proves the required one-to-one correspondence between the admissible processes in prob-
lems (P) and (P1). Since (22) holds for the processes (A(·), w(·)) and (x1(·), w̃1(·)), and
(x1(·), w̃1(·)) = (x(·), w̃(·)), we conclude that (22) is valid for (A(·), w(·)) and (x(·), w̃(·)).

As a direct consequence of Lemma 1 and estimate (8) we arrive at

Lemma 2. There exists a constant M1 > 0 depending only on ρ, L, A0 and S0 such that

sup
(x(·),w̃(·))

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ ln u(t) − (1 − α)[u(t) + v(t)]
}

dt ≤ M1,

where the supremum is taken over all admissible pairs (x(·), w̃(·)) in problem (P1).

Lemma 2 allows us to define an optimal control w̃∗(·) : [0,∞) → R
3 in problem (P1)

as a welfare-maximizing triple w̃∗(·) = (LA
∗ (·), u∗(·), v∗(·)). The corresponding admissible

trajectory x∗(·) is an optimal one in problem (P1).
To recapitulate, we showed that a process (A(·), w(·)) is optimal in problem (P) if

and only if the corresponding process (x(·), w̃(·)) is optimal in problem (P1). In the next
section we formulate and prove two main theoretical results on which the subsequent
solution of the problem is based.

4 Existence of an optimal control and Pontryagin’s

maximum principle

Denote

f(x, ℓ, u, v) = −(1 − η)(u + v)x − (1 − θ)ℓηv1−ηx2,

g(x, ℓ, u, v) = κℓηv1−ηx + αρ ln(L − ℓ) + (1 − α)ρ lnu − (1 − α)(u + v),

x > 0, ℓ ∈ [0, L), u > 0, v ≥ 0,

(23)

so that (19) and (21) become

ẋ(t) = f(x(t), LA(t), u(t), v(t)),

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρtg(x(t), LA(t), u(t), v(t)) dt → max .

Let M(x, u, v, p) and M(x, p) be the current value Hamilton–Pontryagin function and
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the current value Hamiltonian for problem (P1) in the normal form:

M(x, ℓ, u, v, p) = f(x, ℓ, u, v)p + g(x, ℓ, u, v)

= −(1 − η)(u + v)xp − (1 − θ)ℓηv1−ηx2p + κℓηv1−ηx

+ αρ ln(L − ℓ) + (1 − α)ρ lnu − (1 − α)(u + v), (24)

M(x, p) = sup
ℓ∈[0,L), u>0, v≥0

M(x, ℓ, u, v, p).

Here x > 0, ℓ ∈ [0, L), u > 0, v ≥ 0 and p ∈ R
1.

Next, we formulate two important theorems (an existence theorem and a version of the
Pontryagin maximum principle for problem (P1)) that allow us to perform a qualitative
analysis of the solution to problem (P) (in Section 5). The proofs of these theorems
(together with all necessary auxiliary statements) constitute the rest of this section.

Theorem 1 (existence). There exists an optimal process (x∗(·), w̃∗(·)) in problem (P1).
The process (A∗(·), w∗(·)) corresponding to (x∗(·), w̃∗(·)) (in the sense of Lemma 1) is
optimal in problem (P).

Theorem 2 (maximum principle). Let (x∗(·), w̃∗(·)) = (x∗(·), L
A
∗ (·), u∗(·), v∗(·)) be an

optimal process in problem (P1) and (A∗(·), w∗(·)) be the corresponding (in the sense
of Lemma 1) optimal process in problem (P). Then there exists a current value adjoint
variable p(·) such that the following conditions hold :

(i) The process (x∗(·), w̃∗(·)), together with the current value adjoint variable p(·),
satisfies the core relations of the Pontryagin maximum principle in the normal form on
the infinite time interval [0,∞):

ṗ(t) = ρp(t) −
∂M(x∗(t), L

A
∗ (t), u∗(t), v∗(t), p(t))

∂x
for a.e. t > 0, (25)

M(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t)) = M(x∗(t), p(t)) for a.e. t > 0. (26)

(ii) The process (x∗(·), w̃∗(·)), together with the current value adjoint variable p(·),
satisfies the normal-form stationarity condition

M(x∗(t), p(t)) = ρeρt

∫ ∞

t

e−ρsg(x∗(s), L
A
∗ (s), u∗(s), v∗(s)) ds for all t ≥ 0.

(iii) For any t ≥ 0

p(t) = eρte−y(t)

∫ ∞

t

e−ρsey(s) ∂g(x∗(s), L
A
∗ (s), u∗(s), v∗(s))

∂x
ds, (27)

where y(t) =
∫ t

0
∂f(x∗(s),LA

∗
(s),u∗(s),v∗(s))
∂x

ds ≤ 0.

Let us outline the scheme of proofs of these two theorems. First, we show that it suffices
to consider only bounded controls in problem (P1). Then we introduce the problem with
a slightly modified objective functional, which is defined for controls that take values in
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the compact closure of the admissible control set. We show that the optimal processes
in these two problems coincide. Finally, using standard results of optimal control theory,
we prove analogs of Theorems 1 and 2 for the modified problem, which automatically
implies the assertions of Theorems 1 and 2. The above approach is presented as a series
of auxiliary lemmas that are subsequently used to prove the theorems.

Denote

V0 =

(

(1 − η)κLηx0

1 − α

)1/η

(28)

and consider the following optimal control problem (P1′) with bounded controls:

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, (29)

LA(t) ∈ [0, L), u(t) ∈ (0, ρ], v(t) ∈ [0, V0], (30)

x(0) = x0, (31)

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ lnu(t) − (1 − α)[u(t) + v(t)]
}

dt → max . (32)

Lemma 3. If w̃∗(·) = (LA
∗ (·), u∗(·), v∗(·)) is an optimal admissible control in prob-

lem (P1), then

u∗(t) ≤ ρ and v∗(t) ≤ V0 =

(

(1 − η)κLηx0

1 − α

)1/η

for a.e. t > 0,

and so w̃∗(·) is also an optimal admissible control in problem (P1′). Conversely, if ˆ̃w∗(·)
is an optimal admissible control in problem (P1′), then it is also an optimal admissible
control in problem (P1).

Before proving the lemma, we point out a corollary to this lemma and formula (27).

Corollary 1. The current value adjoint variable p(·) satisfying the conditions of Theo-
rem 2 is bounded:

0 ≤ p(t) ≤
κLηV 1−η

0

ρ
for all t > 0

(if η = 1, then V0 = 0 and we consider V 1−η
0 to be 1). In particular, the transversality

condition
lim
t→∞

e−ρtx∗(t)p(t) = 0

holds for any optimal process (x∗(·), w̃∗(·)) in problem (P1).

Proof. Indeed, since ∂f
∂x

(x, ℓ, u, v) ≤ 0 for all x > 0, ℓ ∈ [0, L), u > 0 and v ≥ 0, it follows
that y(·) is a monotonically decreasing function, and so

0 ≤ p(t) ≤ eρt

∫ ∞

t

e−ρs
κLA

∗ (s)ηv∗(s)
1−η ds ≤

κLηV 1−η
0

ρ
for all t > 0.

This implies the transversality condition, as 0 < x∗(t) ≤ x0 for t > 0.
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Proof of Lemma 3. Let w̃(·) = (LA(·), u(·), v(·)) be an admissible control in problem (P1)
such that ess supt>0 u(t) > ρ or ess supt>0 v(t) > V0. Define a new admissible bounded
control w(·) = (LA(·), ū(·), v̄(·)) with ū(t) = min{u(t), ρ} and v̄(t) = min{v(t), V0}, t ≥ 0.
Note that w(·) is also an admissible control in problem (P1′).

Let x(·) and x̄(·) be the trajectories of problem (P1) (with the same initial condition x0)
that correspond to w̃(·) and w(·), respectively (x̄(·) is also a trajectory of problem (P1′)).
Then we have

ū(t) ≤ u(t), v̄(t) ≤ v(t) and x0 ≥ x̄(t) ≥ x(t) > 0 for all t > 0

by virtue of equation (19). Therefore,

J1(x(·), LA(·), u(·), v(·)) ≤

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx̄(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ lnu(t) − (1 − α)[u(t) + v(t)]
}

dt

<

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv̄(t)1−ηx̄(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ ln ū(t) − (1 − α)[ū(t) + v̄(t)]
}

dt

= J1(x̄(·), LA(·), ū(·), v̄(·)),

where we used the inequalities

d

du

(

(1 − α)ρ lnu − (1 − α)u
)

< 0,
d

dv

(

κ[LA(t)]ηv1−ηx̄(t) − (1 − α)v
)

< 0

for all t > 0 and u > ρ, v > V0.
Thus, we see that if ess supt>0 u(t) > ρ or ess supt>0 v(t) > V0, then the control w̃(·)

cannot be optimal. This proves the first part of the lemma.
Conversely, if (x∗(·), w̃∗(·)) = (x∗(·), L

A
∗ (·), u∗(·), v∗(·)) is an optimal process in prob-

lem (P1′) and (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) is any process in problem (P1), then,
again, introducing a new bounded control w(·) = (LA(·), ū(·), v̄(·)) with ū(t) = min{u(t), ρ}
and v̄(t) = min{v(t), V0}, t ≥ 0, we see that

J1(x(·), LA(·), u(·), v(·)) ≤ J1(x̄(·), LA(·), ū(·), v̄(·)) ≤ J1(x∗(·), L
A
∗ (·), u∗(·), v∗(·)),

where x̄(·) is the trajectory of problem (P1) (as well as of (P1′)) corresponding to the
control w(·).

Our next goal is to establish the existence of an optimal admissible control w̃∗(·) in
problem (P1′). To apply a standard existence theorem of optimal control theory, we need
to compactify the range of values of the control variables. For this purpose, we introduce
the function

Lε(ξ) =







ln ε +
1

ε
(ξ − ε) for 0 ≤ ξ ≤ ε,

ln ξ for ξ > ε,
(33)
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where ε < 1 is a small positive constant, to the utility functional J1(x(·), LA(·), u(·), v(·)).
Obviously, Lε(·) is a continuously differentiable and concave function on [0,∞) and
Lε(ξ) ≥ ln ξ for ξ ∈ (0,∞).

Now consider an auxiliary problem (Pε):

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, (34)

LA(t) ∈ [0, L], u(t) ∈ [0, ρ], v(t) ∈ [0, V0], (35)

x(0) = x0,

Jε(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρLε

(

L − LA(t)
)

+ (1 − α)ρLε(u(t)) − (1 − α)[u(t) + v(t)]
}

dt → max, (36)

where x0 is the same as in (31). Clearly, any process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·))
in problem (P1′) is also an admissible process in problem (Pε).

Lemma 4. If there is an optimal process (x∗(·), w̃∗(·)) = (x∗(·), L
A
∗ (·), u∗(·), v∗(·)) in

problem (Pε) such that LA
∗ (t) ≤ L − ε and u∗(t) ≥ ε for a.e. t ∈ (0,∞), then

(i) this process is also optimal in problem (P1′);

(ii) any other optimal process (x̂∗(·), ˆ̃w∗(·)) = (x̂∗(·), L̂
A
∗ (·), û∗(·), v̂∗(·)) (if it exists) in

problem (P1′) is such that L̂A
∗ (t) ≤ L− ε and û∗(t) ≥ ε for a.e. t ∈ (0,∞) and so it

is also optimal in problem (Pε).

Proof. Assertion (i) is valid because Jε(x(·), LA(·), u(·), v(·)) ≥ J1(x(·), LA(·), u(·), v(·))
for any admissible process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) in problem (P1′), while
Jε(x∗(·), L

A
∗ (·), u∗(·), v∗(·)) = J1(x∗(·), L

A
∗ (·), u∗(·), v∗(·)).

If (x̂(·), ˆ̃w(·)) = (x̂(·), L̂A(·), û(·), v̂(·)) is a process in problem (P1′) such that L̂A(t) >
L − ε or û(t) < ε on a positive measure set of values of t, then

J1(x̂(·), L̂A(·), û(·), v̂(·)) < Jε(x̂(·), L̂A(·), û(·), v̂(·)) ≤ Jε(x∗(·), L
A
∗ (·), u∗(·), v∗(·))

= J1(x∗(·), L
A
∗ (·), u∗(·), v∗(·))

and hence this process cannot be optimal in problem (P1′). This implies (ii).

Denote
W = [0, L] × [0, ρ] × [0, V0]

and

gε(x, ℓ, u, v) = κℓηv1−ηx + αρLε(L − ℓ) + (1 − α)ρLε(u) − (1 − α)(u + v),

x > 0, (ℓ, u, v) ∈ W,
(37)

so that (34) and (36) become

ẋ(t) = f(x(t), LA(t), u(t), v(t)),

Jε(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρtgε(x(t), LA(t), u(t), v(t)) dt → max

13



(see (23)).
For every x > 0, consider the following set, which is standard in optimal control

theory:

Q(x) =
{

(z0, z) ∈ R
2 : z0 ≤ gε(x, ℓ, u, v), z = f(x, ℓ, u, v), (ℓ, u, v) ∈ W

}

.

Lemma 5. For every x > 0, the set Q(x) is convex.

Proof. It suffices to show that for any two points (z0
1 , z1), (z

0
2, z2) ∈ Q(x) the midpoint

of the segment joining (z0
1 , z1) to (z0

2 , z2) also lies in Q(x). Let zi = f(x, ℓi, ui, vi) and
z0

i ≤ gε(x, ℓi, ui, vi) for some (ℓi, ui, vi) ∈ W (i = 1, 2). We need to show that there exists
(ℓ̄, ū, v̄) ∈ W such that

f(x, ℓ̄, ū, v̄) = z̄ =
z1 + z2

2
and gε(x, ℓ̄, ū, v̄) ≥ z̄0 =

z0
1 + z0

2

2
.

We will seek (ℓ̄, ū, v̄) in the form

ℓ̄ = ℓ̄(ǫ) =
ℓ1 + ℓ2

2
− ǫ, ū =

u1 + u2

2
, v̄ =

v1 + v2

2

with 0 ≤ ǫ ≤ ℓ1+ℓ2
2

. It is obvious that such a triple belongs to W .
Note that

(

ℓ1 + ℓ2

2

)η(
v1 + v2

2

)1−η

≥
ℓη
1v

1−η
1 + ℓη

2v
1−η
2

2
, 0 ≤ η ≤ 1

(see, e.g., [13, Theorem 38]). Therefore,

f(x, 0, ū, v̄) ≥ z̄ and f(x, ℓ̄(0), ū, v̄) ≤ z̄.

Since f(x, ℓ̄(·), ū, v̄) is a continuous function of ǫ, there indeed exists an ǫ, 0 ≤ ǫ ≤ ℓ1+ℓ2
2

,
such that

f(x, ℓ̄(ǫ), ū, v̄) = z̄. (38)

We fix such an ǫ and write simply ℓ̄ instead of ℓ̄(ǫ) in what follows.
Now let us show that gε(x, ℓ̄, ū, v̄) ≥ z̄0. Note that due to (38), for θ < 1,

ℓ̄ηv̄1−ηx =
−(1 − η)(ū + v̄)x − z̄

(1 − θ)x
=

−(1 − η)(u1 + u2 + v1 + v2)x − (z1 + z2)

2(1 − θ)x

=
ℓη
1v

1−η
1 x + ℓη

2v
1−η
2 x

2
. (39)

If θ = 1, then f(·) does not depend on ℓ and so (38) holds for all ǫ. Therefore, choosing an
appropriate ǫ, we can achieve the equality of the first and last expressions in the chain (39)
in this case as well.

Since Lε(·) is a concave increasing function, we have Lε(L− ℓ̄) ≥ Lε(L− ℓ̄(0)) and in
view of (39) find that

gε(x, ℓ̄, ū, v̄) ≥
gε(x, ℓ1, u1, v1) + gε(x, ℓ2, u2, v2)

2
≥ z̄0.

This completes the proof of Lemma 5.
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Lemma 6. For any ε, 0 < ε < 1, there exists an optimal control in problem (Pε).
Moreover, if ε is small enough, then any optimal control w̃(·) = (LA

∗ (·), u∗(·), v∗(·)) in
problem (Pε) is such that LA

∗ (t) ≤ L − ε and u∗(t) ≥ ε for a.e. t ∈ (0,∞).

Proof. The existence follows from Theorem 2.1 in [4] and Lemma 5.
Note that problem (Pε) falls within the case of dominating discount (see [4, Sec-

tion 12]), so we can apply the version of Pontryagin’s maximum principle formulated
in [4, Theorem 12.1] to this problem. To this end, define the current value Hamilton–
Pontryagin function Mε(x, u, v, p) and the current value Hamiltonian Mε(x, p) in prob-
lem (Pε) in the normal form:

Mε(x, ℓ, u, v, p) = f(x, ℓ, u, v)p + gε(x, ℓ, u, v)

= −(1 − η)(u + v)xp − (1 − θ)ℓηv1−ηx2p + κℓηv1−ηx

+ αρLε(L − ℓ) + (1 − α)ρLε(u) − (1 − α)(u + v), (40)

Mε(x, p) = sup
(ℓ,u,v)∈W

Mε(x, ℓ, u, v, p). (41)

Here x > 0, (ℓ, u, v) ∈ W and p ∈ R
1.

Let (x∗(·), w̃∗(·)) = (x∗(·), L
A
∗ (·), u∗(·), v∗(·)) be an optimal process in problem (Pε).

Then, by Theorem 12.1 from [4], we have

Mε(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t)) = Mε(x∗(t), p(t)) for a.e. t > 0, (42)

where

p(t) = eρte−y(t)

∫ ∞

t

e−ρsey(s) ∂gε(x∗(s), L
A
∗ (s), u∗(s), v∗(s))

∂x
ds (43)

with the same y(·) as in Theorem 2. As shown in the proof of Corollary 1, y(·) is a
monotonically decreasing function, and so

0 ≤ p(t) ≤
1

ρ
sup

x>0, (ℓ,u,v)∈W

∂gε(x, ℓ, u, v)

∂x
=

κLηV 1−η
0

ρ
for all t > 0.

We also have 0 < x∗(·) ≤ x0. However, it is easy to show that if ε is sufficiently small,1

then the maximum of the function Mε(x, ·, ·, ·, p) with respect to (ℓ, u, v) ∈ W for fixed
x ∈ (0, x0] and p ∈ [0, κLηV 1−η

0 /ρ] cannot be attained at a point (ℓ, u, v) such that
ℓ > L − ε or u < ε. Indeed, it suffices to calculate the partial derivatives of Mε with
respect to ℓ and u.

This fact, together with the maximum condition (42), completes the proof of the
lemma.

Proof of Theorem 1. Above we have shown that the auxiliary problem (Pε) has a solution,
i.e. an optimal process (x∗(·), w̃∗(·)) = (x∗(·), L

A
∗ (·), u∗(·), v∗(·)), and proved certain esti-

mates for the corresponding optimal control (Lemma 6). These estimates show (Lemma 4)
that any such solution is also an optimal process in problem (P1′), and so is an optimal
process in problem (P1) (Lemma 3), which is equivalent to the original problem (P)
(Lemma 1). Thus, we obtain the existence of an optimal control in problem (P).

1Of course, the upper bound for ε that guarantees the validity of this statement depends on x0, but
x0 is fixed from the onset.
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Proof of Theorem 2. Fix a sufficiently small ε. By Lemmas 6 and 4(ii), LA
∗ (t) ≤ L − ε

and u∗(t) ≥ ε for a.e. t ∈ (0,∞), and (x∗(·), w̃∗(·)) is an optimal process in problem (Pε).
By Theorem 12.1 in [4], such an adjoint variable p(·) satisfying properties (i)–(iii) of

Theorem 2 (with gε(·), Mε(·) and Mε(·) instead of g(·), M(·) and M(·), respectively)
exists for the optimal process (x∗(·), w̃∗(·)) in problem (Pε). Since LA

∗ (t) ≤ L − ε and
u∗(t) ≥ ε for a.e. t > 0, we have g(x∗(t), L

A
∗ (t), u∗(t), v∗(t)) = gε(x∗(t), L

A
∗ (t), u∗(t), v∗(t))

and M(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t)) = Mε(x∗(t), L

A
∗ (t), u∗(t), v∗(t), p(t)) for a.e. t > 0.

Moreover, since M(x, ℓ, u, v, p) ≤ Mε(x, ℓ, u, v, p) for all x > 0, p > 0 and (ℓ, u, v) ∈ W ,
we also have M(x∗(t), p(t)) = Mε(x∗(t), p(t)).

Thus, properties (i)–(iii) of Theorem 2 with g(·), M(·) and M(·) follow from the
same properties with gε(·), Mε(·) and Mε(·). In particular, (42) and (43) become (26)
and (27).

Theorem 2 allows us to explicitly write the Hamiltonian system of the Pontryagin
maximum principle for problem (P1). In the next section, we will analyze the qualitative
behavior of solutions to this system and single out all optimal regimes.

5 Analysis of the Hamiltonian system

We know from Theorem 1 that an optimal process (x∗(·), w̃∗(·)) in problem (P1) exists and
satisfies the relations of Theorem 2. Using Theorem 2, we can construct the Hamiltonian
system of the Pontryagin maximum principle for problem (P1) in the variables x(·) and
p(·) directly. However, to simplify the further analysis, we pass from the variable p(·) to a
new variable φ(·) defined as φ(t) = x(t)p(t), t > 0. Then we write and analyze the relations
of the Hamiltonian system of the Pontryagin maximum principle for problem (P1) in the
variables x(·) and φ(·).

In terms of the variable φ(·), the adjoint system (see (25)) and the maximum condition
(see (26)) take the forms

φ̇(t) = ẋ(t)p(t) + x(t)ṗ(t) = ρφ(t) + LA(t)ηv(t)1−ηx(t)
[

(1 − θ)φ(t) − κ
]

(44)

and
M̃(x, ℓ, u, v, φ) → max

ℓ∈[0,L),u>0,v≥0
, (45)

respectively. Here the function M̃(·) is defined by the equality (see (24))

M̃(x, ℓ, u, v, φ) = −
[

1 − α + (1 − η)φ
]

(u + v)

+
[

κ − (1 − θ)φ
]

ℓηv1−ηx + αρ ln(L − ℓ) + (1 − α)ρ ln u, (46)

for all x > 0, φ ≥ 0, u > 0, v ≥ 0 and 0 ≤ ℓ < L.
Our first aim is to write the Hamiltonian system of the maximum principle for prob-

lem (P1) in terms of the variables x(·) and φ(·) by combining equations (19) and (44)
(and using maximum condition (45)). To this end, we first express the quantities LA(x, φ),
u(x, φ) and v(x, φ) as functions of x and φ that are (unique) maximizers of M̃(·) with
respect to ℓ, u and v, respectively (see maximum condition (45)), for all x > 0 and φ ≥ 0.
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Then, substituting these maximizers into equations (19) and (44), we get the Hamiltonian
system of the maximum principle for problem (P1) in the form

ẋ(t) = −(1 − η)[u(x(t), φ(t)) + v(x(t), φ(t))]x(t)

− (1 − θ)LA(x(t), φ(t))ηv(x(t), φ(t))1−ηx(t)2,

φ̇(t) = ρφ(t) + LA(x(t), φ(t))ηv(x(t), φ(t))1−ηx(t)
[

(1 − θ)φ(t) − κ
]

.

(47)

The value u(x, φ) at which the maximum of M̃(·) with respect to u is attained can
easily be found by means of differentiation (see (46)):

u(x, φ) =
(1 − α)ρ

1 − α + (1 − η)φ
. (48)

If κ ≤ (1 − θ)φ, then the maximum of M̃(·) with respect to ℓ and v is attained for
v(x, φ) = LA(x, φ) = 0.

Suppose that κ > (1−θ)φ. If η = 1, then v(x, φ) = 0 simply because of the constraint
0 ≤ v ≤ V0 = 0 (see (35) and (28)), and u(x, φ) = ρ (see (48)). In this case it is obvious
that the maximum point of M̃(·) as a function of ℓ is given by

LA(x, φ) = L −
αρ

(κ − (1 − θ)φ)x
. (49)

Finally, consider the case when κ > (1 − θ)φ and η < 1. Note that M̃(x, ℓ, u, v, φ) →
−∞ as v → ∞ or ℓ → L − 0. On the other hand, if one of the variables, v or ℓ, is
zero, then the maximum with respect to the other variable is attained at zero. Therefore,
the maximum of M̃(·) with respect to ℓ and v is attained either at the point v(x, φ) =
LA(x, φ) = 0 or at an interior point, in which case this point can be found by equating
the partial derivatives of M̃(·) with respect to ℓ and v to zero:

η
[

κ − (1 − θ)φ
]

(v

ℓ

)1−η

x =
αρ

L − ℓ
, (50)

(1 − η)
[

κ − (1 − θ)φ
]

(

ℓ

v

)η

x = 1 − α + (1 − η)φ. (51)

Denoting

h(x, φ) =
1 − α + (1 − η)φ

(1 − η)x[κ − (1 − θ)φ]
, x > 0, 0 ≤ φ <

κ

1 − θ
,

we find
ℓ

v
= h(x, φ)

1

η (52)

and

ℓ = L −
αρh(x, φ)

1−η
η

η[κ − (1 − θ)φ]x
= L −

αρ(1 − α + (1 − η)φ)
1−η

η

η(1 − η)
1−η

η (x[κ − (1 − θ)φ])
1

η

, (53)

v =
L

h(x, φ)
1

η

−
αρh(x, φ)−1

η[κ − (1 − θ)φ]x
=

L((1 − η)x[κ − (1 − θ)φ])
1

η

(1 − α + (1 − η)φ)
1

η

−
αρ(1 − η)

η(1 − α + (1 − η)φ)
.

(54)
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x

x̄

φ

Γ0

Γ0
Γ1

0

κ

1 − θ

Figure 1: The sets Γ0 and Γ1 and the optimal trajectory (thick line). All trajectories
lying above the optimal one tend to infinity along the φ-axis. All trajectories lying below
the optimal one transversally intersect the x-axis.

If these formulas yield positive values v(x, φ) and LA(x, φ) of v and ℓ, then this is the
maximum point of M̃(·) with respect to v and ℓ. Otherwise, the maximum point is
v(x, φ) = LA(x, φ) = 0.

Note that (53) and (54) for η = 1 turn into (49) and v(x, φ) = 0, respectively, if we
consider (1 − η)1−η to be 1 for η = 1.

Set

h1(φ) =
αηρη(1 − α + (1 − η)φ)1−η

Lηηη(1 − η)1−η[κ − (1 − θ)φ]
, 0 ≤ (1 − θ)φ < κ,

and introduce the following sets (see Fig. 1):

Γ = {(x, φ) ∈ R
2 : x > 0, φ ≥ 0},

Γ0 =
{

(x, φ) ∈ Γ: (1 − θ)φ ≥ κ or {(1 − θ)φ < κ, x < h1(φ)}
}

, Γ1 = Γ \ Γ0.

According to the above analysis, in Γ0 both LA(x, φ) and v(x, φ) vanish, and so our
Hamiltonian system (47) in Γ0 has the form

ẋ(t) = −
(1 − η)(1 − α)ρ

1 − α + (1 − η)φ(t)
x(t),

φ̇(t) = ρφ(t).

Note that h1(·) is a monotonically increasing function of φ (except for the case η = θ = 1,
in which h1(·) ≡ const). Therefore, any trajectory of our system that reaches the set Γ0

cannot leave this set afterwards. (Indeed, at every point of Γ0 we have ẋ(·) ≤ 0 and
φ̇(·) ≥ 0.) However, we know that φ(·) is bounded along an optimal trajectory (e.g., by
Corollary 1); hence the only candidate for an optimal trajectory in Γ0 lies on the x-axis
and looks like

x(t) = x̄e−(1−η)ρ(t−τ), φ(t) = 0 for t ≥ τ, (55)

where

x̄ = h1(0) =
ρηαη(1 − α)1−η

Lηηη(1 − η)1−ηκ
. (56)
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On the other hand, since ẋ(t) ≤ 0, any bounded trajectory must tend to a fixed point. If
η < 1, then ẋ(·) < 0 in the interior of Γ1 and consequently any trajectory of our system
starting in Γ1 eventually enters the set Γ0. This shows that there is a unique bounded
trajectory of our system, and hence the optimal process in problem (P1) is also unique.
The tail of this trajectory is described by (55).

If η = 1 and θ < 1, then for similar reasons any bounded trajectory starting in Γ1

tends to the point (x̄, 0) on the boundary of Γ1. Let us show that there is only one such
trajectory (x̃(·), φ̃(·)) in Γ1. Indeed, if there were two trajectories lying in Γ1 and tending
to (x̄, 0), then any trajectory lying between these two would also tend to (x̄, 0) (because
ẋ(·) ≤ 0). However, this is impossible, as we can show, for example, by considering the
linearization of the Hamiltonian system of the maximum principle in Γ1 at the point (x̄, 0)
and applying the Grobman–Hartman theorem (see [14]).

Finally, if η = θ = 1, then x(t) ≡ 1 (see (12)) and φ̇(t) = ρφ(t) − ℓκ, where ℓ =
max{0, L − αρ

κ
}. Thus, the only bounded trajectory is the fixed point x = 1, φ =

max{0, Lκ

ρ
− α}. Recall that in this case the optimal controls are u(t) ≡ ρ, v(t) ≡ 0 and

LA(t) ≡ max{0, L − αρ
κ
}.

Let us now examine the initial part of the optimal trajectory lying in Γ1, for η < 1.
Using formulas (52) and (54), we find

ℓηv1−η = h(x, φ)v =
L

h(x, φ)
1−η

η

−
αρ

ηx[κ − (1 − θ)φ]
.

Similarly, due to (48) and (54), we obtain

u + v =
(η − α)ρ

η(1 − α + (1 − η)φ)
+

L

h(x, φ)
1

η

.

Thus, our system (47) in Γ1 has the form

ẋ(t) = −(1 − η)

[

(η − α)ρ

η(1 − α + (1 − η)φ(t))
+

L

h(x(t), φ(t))
1

η

]

x(t)

− (1 − θ)

[

L

h(x(t), φ(t))
1−η

η

−
αρ

ηx(t)[κ − (1 − θ)φ(t)]

]

x(t)2,

φ̇(t) = ρφ(t) −
L(1 − α + (1 − η)φ(t))

(1 − η)h(x(t), φ(t))
1

η

+
αρ

η
,

(57)

and we are interested in the trajectory (x̃(·), φ̃(·)) that passes through the point (x̄, 0). It
would be difficult to solve this system analytically, but for numerical simulations it suffices
to know that the sought trajectory (x̃(·), φ̃(·)) is a solution to the Cauchy problem for
system (57) in reverse time (i.e., with the right-hand side taken with the opposite sign)
under the initial condition x̃(0) = x̄, φ̃(0) = 0.

Moreover, since ˙̃x(t) < 0 for all t > 0, we can express φ̃(·) as a function of x̃(·) along
this trajectory, φ̃ = φ∗(x).

If η = 1 and θ < 1, we can also express φ̃(·) as a (continuous) function of x̃(·) along
this trajectory, φ̃ = φ∗(x) (with φ∗(x) = 0 for x ≤ x̄). However, this trajectory cannot be
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found as a solution of the Cauchy problem, as described above, as (x̄, 0) is a fixed point
of the Hamiltonian system for η = 1.

Thus, for ηθ < 1 we obtain a unique optimal feedback control u∗(x) = u(x, φ∗(x)),
v∗(x) = v(x, φ∗(x)), LA

∗ (x) = LA(x, φ∗(x)) according to formulas (48), (54) and (49), (53).
Let us summarize the above analysis of the Hamiltonian system as follows:

Theorem 3. (a) If η = 1 and θ = 1, then there is a unique optimal control w̃(·) =
(LA

∗ (·), u∗(·), v∗(·)) in problem (P1), with

LA
∗ (t) ≡ max

{

0, L −
αρ

κ

}

, u∗(t) ≡ ρ, v∗(t) ≡ 0 for all t ∈ [0,∞).

In this case x(t) ≡ x0 = 1, t ≥ 0 is a unique admissible trajectory (see (12)).

(b) If ηθ < 1, then there is a unique optimal feedback control (optimal synthesis)
w̃∗(x) = (LA

∗ (x), u∗(x), v∗(x)) in problem (P1), with LA
∗ (x) = LA(x, φ∗(x)), u∗(x) =

u(x, φ∗(x)) and v∗(x) = v(x, φ∗(x)) determined by formulas (49), (53), (48) and (54).
Here the feedback φ∗(x) is generated by a unique solution (x̃(·), φ̃(·)) of the Hamiltonian
system (57) that reaches (or tends to) the point (x̄, 0) from the right, where (see (56))

x̄ =
ρηαη(1 − α)1−η

Lηηη(1 − η)1−ηκ
.

Namely,

(b.1) If ηθ < 1 and x ≤ x̄, then

LA
∗ (x) = 0, u∗(x) = ρ, v∗(x) = 0.

(b.2) If η = 1, θ < 1 and x > x̄, then (see (49), (48) and (54))

LA
∗ (x) = L −

αρ

(κ − (1 − θ)φ∗(x))x
, u∗(x) = ρ, v∗(x) = 0.

In the case of η = 1 and θ < 1, for any initial state x0 ≤ x̄ the corresponding
optimal trajectory x∗(·) is x∗(t) ≡ x0, t ≥ 0, while for any initial state x0 > x̄ the
corresponding optimal trajectory x∗(·) monotonically tends to the point x̄ from the
right as t → ∞.

(b.3) If η < 1, θ ≤ 1 and x > x̄, then (see (53), (48) and (54))

LA
∗ (x) = L −

αρ(1 − α + (1 − η)φ∗(x))
1−η

η

η(1 − η)
1−η

η (x[κ − (1 − θ)φ∗(x)])
1

η

,

u∗(x) =
(1 − α)ρ

1 − α + (1 − η)φ∗(x)
,

v∗(x) =
L((1 − η)x[κ − (1 − θ)φ∗(x)])

1

η

(1 − α + (1 − η)φ∗(x))
1

η

−
αρ(1 − η)

η(1 − α + (1 − η)φ∗(x))
.

In the case of η < 1 and θ ≤ 1, for any initial state x0 > 0, the corresponding
optimal trajectory x∗(·) monotonically decreases to 0 as t → ∞.
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Finally let us analyze the dynamics of the output Y (·) and the knowledge stock A(·)
along the optimal trajectory.

If η = θ = 1, then (Theorem 3(a)) the optimal controls are u(t) ≡ ρ, v(t) ≡ 0
and LA(t) ≡ max{0, L − αρ

κ
}. In the case of Lκ ≤ αρ, we have stagnation of the

knowledge stock (Ȧ(t) ≡ 0) and depletion of the output (Y (t) → 0 as t → ∞). For
Lκ > αρ, the knowledge stock grows exponentially, while the output still depletes to zero
for Lκ < ρ(α+ κ(1−α)), is constant for Lκ = ρ(α+ κ(1−α)), and grows exponentially
for Lκ > ρ(α + κ(1 − α)).

Let us consider the case ηθ < 1 in more detail. If x0 ≤ x̄, then we again have stagnation
of the knowledge stock and depletion of the output. If x0 > x̄, then the knowledge stock
grows in the beginning, but the growth either terminates at a certain instant (η < 1) or
decelerates (η = 1), so that the knowledge stock never exceeds a certain level determined
by the parameters of the system. The output falls to zero in the long run. However, the
following proposition shows that it may grow on some initial time interval.

Theorem 4. Let ηθ < 1. Then, for sufficiently large initial values x0 (i.e., for a rela-
tively large initial stock of the exhaustible resource S0 and/or for a relatively small initial
knowledge stock A0; see (15)), the output Y (·) as a function of t increases on some initial
time interval 0 < t < τ, τ > 0.

Proof. For large x0 the initial part of the optimal trajectory lies in Γ1 and hence Y (·) is
continuously differentiable for the corresponding values of t. Let us show that Ẏ (t) > 0
on the initial time interval 0 < t < τ , τ > 0, of the optimal trajectory. We have

Ẏ (t) = Y (t)

[

κ
Ȧ(t)

A(t)
− α

L̇A(t)

L − LA(t)
+ (1 − α)

u̇(t)

u(t)
+ (1 − α)

Ṡ(t)

S(t)

]

= Y (t)

[

κLA(t)ηv(t)1−ηx(t) − α
L̇A(t)

L − LA(t)
+ (1 − α)

u̇(t)

u(t)
− (1 − α)(u(t) + v(t))

]

(58)

(see (1), (2), (13) and (12)), where u(t) = u∗(x(t)), v(t) = v∗(x(t)) and LA(t) = LA
∗ (x(t)).

Let us show that φ̇(t) < 0 along the optimal trajectory in Γ1. To see this, note that
the curve on which φ̇(t) = 0 in Γ1 is described by the equation

ρφ +
αρ

η
=

L(1 − α + (1 − η)φ)

(1 − η)h(x, φ)
1

η

=
L(1 − η)

1−η
η (x[κ − (1 − θ)φ])

1

η

(1 − α + (1 − η)φ)
1−η

η

. (59)

This equation defines x as a monotonically increasing function of φ. So any trajectory of
our system that intersects this curve at some instant τ (at a point different from (x̄, 0))
acquires a positive derivative of the φ-coordinate and later enters the set Γ0 (at a point
different from (x̄, φ)). Such a trajectory tends to infinity and so it is not optimal. Hence
our optimal trajectory lies in Γ1 completely below the above curve, and φ̇(t) < 0 on it.
This immediately implies that u̇(t) ≥ 0 in (58) (see (48)).

To estimate the second term in the square brackets in (58), we first denote ζ(t) =
x(t)[κ − (1 − θ)φ(t)], ζ∗(x) = x[κ − (1 − θ)φ∗(x)], and calculate (along the optimal
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trajectory in Γ1)

ζ̇(t) =
d

dt

(

x(t)
[

κ − (1 − θ)φ(t)
])

= ẋ(t)
[

κ − (1 − θ)φ(t)
]

− (1 − θ)x(t)φ̇(t)

= −(1 − η)
[

u∗(x(t)) + v∗(x(t))
]

ζ(t) − (1 − θ)ρx(t)φ(t) < 0, (60)

because ζ(t) > 0 for (x(t), φ(t)) ∈ Γ1. Then, after some calculations, we find from (49)
for η = 1, from (53) for η < 1, and from (44), (60) that

−
L̇A(t)

L − LA(t)
=

(1 − η)2φ̇(t)

η
(

1 − α + (1 − η)φ(t)
) −

1

η

ζ̇(t)

ζ(t)

> −
(1 − η)2LA(t)ηv(t)1−ηζ(t)

η
(

1 − α + (1 − η)φ(t)
) +

(1 − θ)ρx(t)φ(t)

ζ(t)
. (61)

If η = 1 and θ < 1, then the right-hand side of (61) is positive; hence dLA
∗

(x)
dx

> 0 and

LA
∗ (x)ηv∗(x)1−ηx → +∞ as x → +∞. (62)

This obviously implies that Ẏ (t) > 0 for large x(t) along the optimal trajectory, as the
second and third terms in the square brackets in (58) are nonnegative, while the last term
is bounded due to the restrictions u(t) ≤ ρ and v(t) = 0.

If η < 1 and θ ≤ 1, then φ∗(x) < κ/(1− θ) in Γ1. Let us show that φ∗(x) → κ/(1− θ)
as x → ∞. Indeed, suppose the contrary. Then it follows from (53) that LA

∗ (x) → L as
x → ∞, and due to (52) v∗(x) ∼ x1/η as x → ∞. Therefore,

dφ∗(x)

dx
=

φ̇(t)

ẋ(t)
=

LA
∗ (x)ηv∗(x)1−ηx[κ − (1 − θ)φ∗(x)] − ρφ∗(x)

(1 − η)[u∗(x) + v∗(x)]x + (1 − θ)LA
∗ (x)ηv∗(x)1−ηx2

∼
1

x
, (63)

which contradicts the boundedness of φ∗(·). Thus, φ∗(x) → κ/(1 − θ) as x → ∞.
If ζ∗(·) is unbounded, then by (53) LA

∗ (x) → L as x → ∞, and by (52) v∗(x) ∼
ζ∗(x)1/η = o(x1/η) and v∗(x) → ∞ as x → ∞. This shows that the first term in the
square brackets in (61) dominates all the negative terms there, and so Ẏ (t) > 0 for large
x(t) along the optimal trajectory.

If ζ∗(·) is bounded, then v∗(·) is bounded by (51). Hence the right-hand side of (61) is

positive for large x(t) and, in particular, dLA
∗

(x)
dx

> 0 for large x. Therefore, again by (51),
v∗(x) is bounded away from zero for large x. We see that (62) holds in this case as well,
which again implies that Ẏ (t) > 0 for large x(t) along the optimal trajectory.

Finally, consider the case of η < 1 and θ = 1. In this case ζ(t) = κx(t). Multiplying
equation (50) raised to the power η by equation (51) raised to the power 1 − η, we find
that

ηη(1 − η)1−η
κx =

αηρη
(

1 − α + (1 − η)φ∗(x)
)1−η

(L − LA
∗ (x))η

Recall that φ∗(·) is a monotonically increasing function of x. If it were bounded, then we
would have LA

∗ (x) → L as x → ∞, v∗(x)η ∼ x by (51), and hence (63) would be valid,
which is impossible for a bounded φ∗(·). Thus, φ∗(x) → ∞ as x → ∞.

22



On the other hand, φ∗(x) = O(x) because the optimal trajectory lies below the curve
described by (59). Therefore, LA

∗ (x) → L as x → ∞ by (53) and v∗(x) ≥ v0 for some
v0 > 0 and for all sufficiently large x by (54). At the same time, v∗(x)η = o(x) by (54).
This shows that the first term in the square brackets in (61) dominates all the negative
terms there, and so Ẏ (t) > 0 for large x(t) along the optimal trajectory.

We showed that for ηθ < 1 the output Y (t) increases on some initial time interval
provided that the initial supply of exhaustible resource S0 is large and/or the initial
knowledge stock A0 is small.

6 Discussion

Dynamics of the output Y (·) and the knowledge stock A(·) along the optimal trajectory
are depicted in Figures 1 and 2. It follows from the above analysis that optimal growth
is only sustainable if the following three conditions hold simultaneously:

(i) the exhaustible resource is not an input to the production of knowledge;

(ii) the accumulation of knowledge has strong scale effects;

(iii) the population is not too small.

In this scenario the growth of output is exponential. The resulting dynamics correspond
to the optimal balanced growth path. In this case for a sufficiently large population size L,
a constant fraction of labor is allocated to research. The lower the discount rate ρ, the
higher this fraction. The fraction also depends on the elasticity of substitution in the
production function. The optimal extraction policy implies an exponential depletion of
the stock of the exhaustible resource, with the rate equal to the discount rate. This is the
well-known Hotelling rule for the optimal depletion of exhaustible resources (see [15]). In
sum this implies an exponential growth of the knowledge stock A(·). Note that unlike
in [16], [17] and many other models, this balanced growth is fully endogenous in the sense
of not requiring an exogenous population growth.

Requirement of strong scale effects (ii) for a balanced growth is the opposite to that
obtained by Jones [18]. In his model, strong scale effects, coupled with an exponential
growth of labor supply, lead to a double-exponential growth of output. This result follows
from the assumption of an exponential population growth, which is unrealistic in the long
run [25]. Exponential population growth implies constant birth and death rates that are
independent of the current population density. Second, more relevant here, exponential
growth implies an arbitrarily large population in the long run. This is problematic in
view of a finite resource base, a defining feature of our framework.

In the most realistic case ηθ < 1 we may have two qualitatively different optimal
policies depending on whether the accumulation of knowledge requires the resource:

(i) When the accumulation of knowledge is independent of the resource (η = 1), the
fraction of labor employed in research tends from an initially positive value to zero. This
means that the research effort becomes successively smaller. The extraction policy is
identical to that in the case of optimal sustainable growth described above. The stock of
the exhaustible resource depletes exponentially with the rate equal to the discount rate
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Figure 2: Dynamics of the output Y (·) under optimal resource allocation: (1) η = θ = 1,
Lκ > ρ(α + κ(1 − α)); (2) η = θ = 1, Lκ = ρ(α + κ(1 − α)); (3) ηθ < 1; (4) η = θ = 1,
Lκ < ρ(α + κ(1 − α)).
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Figure 3: Dynamics of the knowledge stock A(·) under optimal resource allocation:
(1) η = 1, θ < 1; (2) η < 1; (3) η = θ = 1, Lκ > αρ; (4) η = θ = 1, Lκ ≤ αρ.
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(the Hotelling rule). The policy described above is optimal provided the initial knowledge
stock is not too large (x0 > x̄). Otherwise it is optimal to allocate the entire labor to
production from the onset.

(ii) When the accumulation of knowledge requires the resource (η < 1), it is optimal
to conduct research until a certain ratio (characterized by (56)) between the knowledge
stock and the current supply of the resource is reached. In this case the labor and
resource allocated to research gradually decrease and ultimately vanish at the moment of
reaching the above-mentioned ratio. Afterwards the research effort stops and the stock
of knowledge remains at its maximum level. This policy is optimal when x0 > x̄. For
x0 ≤ x̄ it is optimal not to invest in research as the initial knowledge stock is sufficiently
large; the optimal extraction policy follows the Hotelling rule in this case.

Finally, condition (iii) says that a sufficiently small economy (with Lκ ≤ αρ) will not
grow, even under strong scale effects and even if the accumulation of knowledge does not
depend on the exhaustible resource. This minimum size condition is the least restrictive
of all conditions and can be assumed to hold a priori. In the typical case κ = 1, we have
L > αρ. This inequality can be maintained in all cases of interest since L is the size
of the labor force, α < 1 and ρ is the discount rate. The case Lκ ≤ αρ is included for
completeness.
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