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1 Introduction

The traditional approach in the credit-risk literature considers each credit-rating migra-
tion as a trajectory of a time-homogeneous Markov chain. The corresponding transition
probabilities are referred to as historical. See among others Jarrow et al. (1997), Gupton
et al. (1997), Altman (1998) and Trueck and Rachev (2009) for a theoretical background
of this approach and its implementation in the practice of credit-risk analysis.

Seeking to improve the financial sector’s resilience to stress scenarios, several authors
suggested models in which migration probabilities are adjusted according to macroeco-
nomic conditions. Structural breaks, multi-regime transition matrices and hidden Markov
chains are some of the technical means used for modeling and estimating conditional mi-
gration probabilities in Bangia et al. (2002), McNeil and Wendin (2007), Korolkiewicz
and Elliott (2008), Frydman and Schuermann (2008), Stefanescu et al. (2009), Fei et al.
(2012), and Xing et al. (2012).

The Basel III Accord, issued in 2011 by the Basel Committee on Banking Supervision
(BCBS), stimulates developing ”in-house” risk models that enhance the ability of banks to
foresee and absorb shocks caused by financial and economic stress. An important input of
such models is default probabilities. They have to be calibrated for the specific portfolio
of assets held by a bank. The knowledge of distributions of macroeconomic outcomes and
probabilities characterizing their dynamics can further facilitate tailoring risk models to
the needs of a bank. In particular, the set of credit events determining riskiness of the
portfolio in questions can be narrowed by ignoring unlikely outcomes for the composition
of assets in this portfolio. The Banking Supervision Accords typically set 0.1% as the
upper limit for the probability of undesirable credit events.

Our contribution to the literature on credit-risk comprises models for estimating condi-
tional migration matrices and probabilities of the corresponding macroeconomic outcomes.
This is a toolkit for adjusting the historical migration matrices, a key element of the Cred-
itMetrics approach, to the portfolio in hand. The paper is structured as follows. Section 2
presents the modeling approach – coupling schemes. Main assumptions are given in Section
3. First, a setting without macroeconomic dynamics is considered. Then a model based
on a generalization of the regime-switching matrix is presented. The discussion focuses
on the corresponding conditional migration distributions. The inputs used for testing the
suggested estimators are characterized in Section 4 and Appendix 1. Section 5 contains
numerical results and their conceptual interpretation. Section 6 concludes. Appendix 2
describes the maximum likelihood optimization problems used in the estimation.

2 Modeling of credit-rating migrations with coupling schemes

Given a historical transition matrix P , Kaniovski and Pflug (2007) suggested a coupling
scheme for rendering individual credit-rating migrations dependent. The term coupling
scheme means that a migration is split into an idiosyncratic and a common component,
each governed by the same migration matrix P . A purely idiosyncratic dynamics is used
within the CreditMetrics approach. The common component induces probabilistic depen-
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dence among individual migrations.
The distribution of a common component is modified according to the macroeconomic

conditions so that migrations towards riskier credit classes are more or less probable de-
pending on whether the conditions are adverse or favorable. Probabilities of migration
towards more secure credit ratings are adjusted in the opposite direction: they are higher
(lower) under favorable (adverse) macroeconomic conditions. The macroeconomic drivers
of the adjustment are represented by tendency variables. A tendency variable is assigned to
every non-default credit class. In sum, the technique allows to model empirically observed
variability of credit-rating migrations depending upon the phase of a business cycle.

Similar to the common factor models, see among others Bangia et al. (2002) or in Hull
and White (2004), the common component renders individual migrations dependent. A
distinctive feature is the path-dependence: its distribution depends upon the macroeco-
nomic conditions.

In the existing coupling schemes, discussed in Kaniovski and Pflug (2007) and Woz-
abal and Hochreiter (2012), tendency variables do not evolve in time. In this paper, a
time-homogeneous Markovian dynamics of tendency variables is considered. The simplest
variant of such dynamics is implemented in the models employing a regime-switching ma-
trix. They deal typically with a single tendency variable. See, among others, Bangia et
al. (2002), Frydman and Schuermann (2008), or Fei et al. (2012). In particular, Fei et
al. (2012) advocate a Mixture of Markov Chains (MMC) model as an efficient technique
to account for stochastic business cycle effects. The use of the dynamic setting is twofold
in our case. First, its solution serves as a benchmark to validate the results of the static
setting. Second, its steady-state distribution is evaluated to check time-homogeneity of
the probabilities assigned to the macroeconomic scenarios.

3 Macroeconomic scenarios and the respective conditional
migration probabilities

Consider a portfolio where debtors are non-homogeneous in their credit ratings. Let there
be M ≥ 1 non-default credit classes. Numbering them in a descending order, let us
assign 1 to the most secure assets, while the next to default credit class is indexed by M .
Defaulted firms receive the index M + 1.

In the CreditMetrics approach, see Gupton et al. (1997), an M × (M + 1) Markovian
transition matrix P is estimated. Its entry Pi,j equals the probability that a debtor
belonging to a credit class i at time t will move to a credit rating j at time t+1, t = 1, 2, . . . .
The (M + 1)-th row of P is never quoted. According to our notation, it corresponds to
defaulted debtors. It is conventionally assumed that a defaulted debtor never returns to
business, at least under its original name. Conceptually, there is a problem associated
with withdrawn ratings. They are referred to as Not Rated (NR) and typically ignored or
treated separately.

P is believed to reflect an average or a typical, rather than an instantaneous, market
situation. This inability to account for the current macroeconomic conditions has been
criticized in the literature on credit risk. See, among others, Altman (1998), Bangia et al.
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(2002) and Korolkiewicz and Elliott (2008).
Denote by N the initial size of the portfolio. To trace individual migrations, assign

a number n = 1, 2, . . . ,N to every debtor in the portfolio at time t = 1. Set Xn(t) for
the credit rating at time t ≥ 1 of the debtor numbered by n. Since Xn(t) is a time-
homogeneous Markov chain, it will suffice to consider a transition from time t = 1 to time
t = 2:

Xn(2) = δnξn + (1− δn)ηn. (1)

Here, ξn(ηn) is interpreted as an idiosyncratic (common) component in the migration
from Xn(1) to Xn(2). The probability Eδn of success of the Bernoulli random variable
δn determines the frequency of idiosyncratic migrations. The CreditMetrics’ case, where
all migrations are independent, corresponds to P{δn = 1} = 1. The families of random
variables {δn}, {ξn} and {ηn} are independent. The distribution of ξn is given by the
Xn(1)-th row of P . Relation (1) can be interpreted as an agent-based model of dependent
credit-rating migrations. A mechanism for adjusting the distribution of ηn according to
macroeconomic scenarios is described next.

The macroeconomic factors affecting debtors belonging to the credit class i can be
either favorable or adverse. They are encoded as 1 or 0. For M credit classes, a bi-
nary M -vector ~χ describes a state of the economy. Its i-th coordinate χi encodes the
macroeconomic factors affecting the credit class i. There are 2M such vectors.

A typical model involving a regime-switching matrix assumes no differentiation among
the macroeconomic factors affecting different credit classes. Consequently, there are two
macroeconomic states and χ is a scalar. Since a contraction is an adverse macroeconomic
scenario, the corresponding χ = 0. An expansion is a favorable outcome, consequently, it
is encoded as χ = 1.

The conditional migration matrix is defined by the following relations:

Pi,j(1) =

{
Pi,j/Pi if j ≤ i,

0 if j > i;
and Pi,j(0) =

{
Pi,j/(1− Pi) if j > i,

0 if j ≤ i. (2)

Here Pi = Pi,1+Pi,2+. . .+Pi,i. These adjustments of the historical migration probabilities
imply more (less) likely migrations towards riskier credit classes under adverse (favorable)
macroeconomic conditions. Probabilities of migration towards more secure credit ratings
are higher (lower) under favorable (adverse) macroeconomic conditions. In particular,
Pi,j/(1−Pi) > Pi,j for j > i. This inequality holds true because 1−Pi < 1. Consequently,
as compared to their historical counterparts, the conditional probabilities of migrating
towards more risky credit classes increase 1

1−Pi
times for debtors from the credit class i

under adverse macroeconomic conditions.
The conditional distribution of ηn is defined in the following way:

P{ηn = j | ~χ} = PXn(1),j(χXn(1)).

That is, the conditional probabilities Pi,j(·) and P̂i,j(·) depend only upon the i-th coordi-
nate χi of ~χ.

According to formulas (1) and (2), a debtor from a credit class i migrates to a credit
class j with probability Pi,j or Pi,j(1) (Pi,j(0)). Which of these possibilities takes place
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depends on the realization of the corresponding mixing variable δn. If it assumes the
value 1, Pi,j acts as the transition probability, while 0 implies Pi,j(1) or Pi,j(0) depending
on whether the macroeconomic conditions for i are favorable or adverse. This individual
randomizing behavior gives rise to the following conditional probabilities P̂i,j(·) governing
migrations of the whole pool of debtors from credit the class i:

P̂i,j(1) =

{
qiPi,j + (1 − qi)

Pi,j

Pi
if j ≤ i,

qiPi,j if j > i;
P̂i,j(0) =

{
qiPi,j if j ≤ i,

qiPi,j + (1 − qi)
Pi,j

1−Pi
if j > i.

(3)

Here, qi denotes Eδn, common for all debtors n belonging to the credit class i. Since
creditworthiness is the only classification criterion, debtors belonging to a credit class are
not distinguishable. Consequently, their probabilities of success have to coincide.

Conditional migration probabilities P̂i,j(·) characterize the whole pool of debtors in the
credit class i. In fact, the weights qi and 1−qi are frequencies of the two possible migration
patterns, idiosyncratic or dependent, in the pool. Even if there can be no single debtor
in credit class i whose migrations are governed by P̂i,j(·), these values can be interpreted
as conditional migration probabilities of a representative agent. Probabilities P̂i,j(·) are
instantaneous, because they depend upon a particular macroeconomic state. The values
qi are estimated using migration counts as inputs. For some portfolios and particular
credit classes i, these parameters can be equal to 1. Then migrations in the credit class
i are idiosyncratic, as it is postulated by the CreditMetrics framework. A value qi < 1
indicates a dependence pattern between historical migrations. Formulas given next allow
to quantitatively characterize its effect on the riskiness of the portfolio.

To quantify the impact of macroeconomic factors on migrations of the whole pool
of debtors in the credit class i, let us compare probabilities P̂i,j(·) and their historical
counterparts Pi,j . For this purpose, consider the percentage of variation ∆i,j(χi) of the
migration probability Pi,j

∆i,j(χi) =
P̂i,j(χi)− Pi,j

Pi,j
100.

For j ≤ i (j > i) this is an upgrading (downgrading) probability. The corresponding
formulas are summarized in Table 1. Let us interpret them conceptually.

Assume that Pi > 1/2. That is, the credit rating i less likely worsens than improves or
remains unchanged. Such an assumption holds true for all historical migration matrices
given in this paper. Then (1− qi)1−Pi

Pi
< (1− qi) < (1− qi) Pi

1−Pi
for every qi ∈ (0, 1). Re-

ferring to Table 1, we conclude, first, that macroeconomic factors have a weaker effect on
an upgrading than on a downgrading probability and, second, that an upgrading probability
under favorable macroeconomic conditions increases less than a downgrading probability
under adverse macroeconomic conditions. Characterizing the impact of macroeconomic
factors on conditional migration probabilities, Fei et al. (2012) came to a similar con-
clusion: ”The gap between the näıve and MMC estimates is visibly larger in contraction
than in expansion.” See p. 14. These authors call näıve the estimates based on historical
migration probabilities.
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According to Table 1, the percentage of decrease of a downgrading probability under
favorable macroeconomic conditions coincides with the percentage of decrease of its up-
grading counterpart under adverse macroeconomic conditions. Consequently, only one of
them can be quoted in what follows next.

Table 1: Conditional vs. historical migration probabilities, percentage of variation.
Upgrading Downgrading

χi = 1 (1− qi)1−Pi
Pi

100 −(1− qi)100

χi = 0 −(1− qi)100 (1− qi) Pi
1−Pi

100

Involving all credit classes, a macroeconomic scenario corresponds to a binaryM -vector
~χ. In order to distinguish between 2M different macroeconomic scenarios, we can number
them. Interpreting coordinates of ~χ as a binary representation of an integer, let us number
the vectors in a descending order of the corresponding integers so that ~χ(1) = (1, 1, . . . , 1),

while ~χ(2M ) = (0, 0, . . . , 0) . In particular, the four possible scenarios for M = 2 are listed
in the following order:

~χ(1) = (1, 1), ~χ(2) = (1, 0), ~χ(3) = (0, 1), ~χ(4) = (0, 0).

To assess the likelihood of every scenario, we need a distribution over the set {0, 1}M of all
of them. Assigning the probability πj to the j-th binary M -vector ~χ(j), the distribution

can be represented as a vector ~π = (π1, π2, . . . , π2M ) as well. A random vector ~Π whose
distribution is ~π is called a tendency vector. Its coordinates Πi are referred to as tendency
variables. Πi represents the impact of macroeconomic factors on migrations in the credit
class i. The probabilities πj are estimated using migration counts as the input. If πj = 0 for
some j, the corresponding macroeconomic scenario is not feasible – it never comes true.
The simplest conceptual interpretation is having π1 (π2M ), probability of the scenario
favorable (adverse) for all debtors.

The choice of ~π is not arbitrary. Given formulas (2), the unconditional distribution
of ηn coincides, by the formula of total probability, with the Xn-th row of P and, conse-
quently, each individual migration in the credit class i is governed unconditionally by the
mixture qiPi,j + (1− qi)Pi,j = Pi,j , if

P{Πi = 1} = Pi, i = 1, 2, . . . , M. (4)

Consequently, to retain a fundamental assumption of the CreditMetrics approach regard-
ing time-homogeneity of transition probabilities summarized in P , relations (3) have to
hold true.

Fitting the model to historical credit rating migration data, ~q = (q1, q2, . . . , qM ) and
~π have to be estimated, while a historical matrix P is assumed to be known. That is, a
key element of the CreditMetrics approach – the transition matrix – is modified by means
of ~q and ~π in order to match the phases of a business cycle. The parameters summarized
in ~q account for the particular combination of assets in the portfolio and their exposure to
the macroeconomic factors. The macroeconomic scenarios that can be observed for this
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portfolio during a business cycle correspond to the non-zero coordinates of ~π and their
probabilities are given by these coordinates. Recall that all possible 2M scenarios are
numbered. That is, there is a one-to-one correspondence between them and the natural
numbers 1, 2, . . . , 2M . In other words, the function of ~π is twofold: to indicate feasible
macroeconomic scenarios and to characterize their likelihood. In the long run, over several
business cycles, the driver responsible for the average dynamics – the historical matrix P
– remains the same as in the CreditMetrics setting. A model for propagation of a business
cycle is described next.

Assume that tendency vectors evolve as a time-homogeneous Markov chain, ~Πt, t ≥ 1.
Let P = (pi,j) be a Markovian matrix with 2M rows and 2M columns governing this
dynamics. That is, the macroeconomic scenario encoded by a binary vector ~χ(j) follows
the macroeconomic scenario corresponding to ~χ(i) with probability pi,j or

P{~Πt+1 = ~χ(j) | ~Πt = ~χ(i)} = pi,j .

Then the distribution of ~Πt, t ≥ 2, given that the distribution of ~Π1 is ~π, will be ~πPt−1.
Here, Pt−1 stands for the (t− 1)-th power of P. In particular,

P{~Πt = ~χ(j)} = [~πPt−1]j ,

where [~πPt−1]j denotes the j-th coordinate of the vector ~πPt−1.
Observe that this setting generalizes, in a certain sense, the models employing regime-

switching matrices. For example, Bangia et al. (2002), analyzing credit-rating migrations
of American debtors, consider a (quarterly) 2× 2 regime-switching matrix(

θ 1− θ
1− φ φ

)
.

Here, θ (φ) stands for the probability that a quarter of expansion (contraction) will be
followed by a quarter of expansion (contraction). Correspondingly, 1−θ is the probability
that a quarter of contraction follows a quarter of expansion, and 1− φ is the probability
that a quarter of expansion follows a quarter of contraction.

With this observation in mind, an important feature of our approach becomes apparent.
Our economy is synthetic: it comprises firms from different countries. What is common
about them is that their creditworthiness is rated by the same agency. Consequently, it
is neither a conventional nor an easy task to identify recessions and expansions in such
an economy. In this sense, we argue about non-observability of tendency variables. A
sub-economy comprising debtors having the same creditworthiness is a natural research
object in this synthetic economy.

In particular, let M = 2. The corresponding levels of creditworthiness are represented
by the investment-grade and the non-investment-grade debtors. Respectively, there are
four states of the macro-economy: (1, 1), (1, 0), (0, 1) and (0, 0). Given a historical 2× 3
migration matrix P , there are four conditional matrices corresponding to the above four
macroeconomic states. They are formed by the respective Pi,j(·). In particular, with the

7



outcome (0, 1) the following matrix:(
0

P1,2

1−P1

P1,3

1−P1
P2,1

P2

P2,2

P2
0

)

is associated. Since in this case χ1 = 0 (χ2 = 1), its first (second) row is formed by P1,j(0)
(P2,j(1)). Consequently, migrations of every debtor in principle can be governed by five
matrices: by the historical one and these four conditional matrices.

Not all of these potential possibilities need to occur. Consider, for example, the
investment-grade debtors. If q1 = 1, the credit rating of each of them evolves accord-
ing to P1,j . If q1 < 1, the migration is governed by P1,j with probability q1 and by P1,j(1)
or P1,j(0) with probability 1− q1.

Characterizing migrations of the entire pool of debtors, individual behaviors described
by these conditional probabilities have to be taken into account according to their fre-
quencies in the pool. Then the conditional probabilities P̂i,j(·) have to be considered.
For example, the outcome (1, 1) means that macroeconomic conditions are favorable for
both credit classes. It occurs with probability P{{Π1 = 1} ∩ {Π2 = 1}}. Under this
macroeconomic scenario, migrations of a representative debtor will be governed by(

q1P1,1 + 1− q1 q1P1,2 q1P1,3

q2P2,1 + (1− q2)P2,1

P2
q2P2,2 + (1− q2)P2,2

P2
q2P2,3

)
.

The first (second) row of this conditional migration matrix corresponds to a representative
investment-grade (non-investment grade) debtor. It is formed by P̂1,j(1) (P̂2,j(1)). If
q1 6= 1 and q2 6= 1, the probabilities of migration towards more secure (risky) credit classes
are larger (smaller) here than their historical counterparts.

The matrix P, an analog of the regime-switching matrix, is formed now by probabilities
of the events that a macroeconomic state (i1, i2) will be followed by (j1, j2). This is a 4×4
matrix. According to the agreed way of numbering of macroeconomic scenarios, p1,4 is
the probability that (1, 1) is followed by (0, 0). That is, a macroeconomic state favorable
for the whole synthetic economy is followed by an adverse for all debtors state. Within
the approach employing a regime-switching matrix, Fei et al. (2012) introduced a regime-
switching matrix with three regimes defined as ”expansion, ’mild’ recession and ’severe’
recession, where mild and severe are qualified in terms of the time-length or severity
measured, say as the percentage decrease in real GDP growth.” See p. 8.

Fitting a dynamic model to historical credit rating migration data, additionally to ~q
and ~π, the Markovian matrix P has to be estimated.

4 Input data

For a description of the dataset see Appendix 1. The unknown parameters are estimated
by the maximum likelihood method. The estimator is given in Appendix 2.

With a reduction (merging CCC, CC and C in a single credit class C) of the basic
S&P’s classification, M = 7 credit ratings are termed as AAA, AA, A, BBB, BB, B and

8



C. Because of the computational complexity of the corresponding estimators, the dynamic
setting is tested for M = 2. In this case, investment-grade debtors are characterized by
the S&P’s ratings from AAA to BBB, while non-investment-grade debtors occupy the
riskier ratings, starting from BB. Estimates for the static setting with M = 2 serve as a
benchmark for interpreting the parameters obtained for M = 7.

The historical matrices P for M = 7 and M = 2 are estimated as the time averages:

0.8948 0.0986 0.0047 0.0008 0 0 0 0.0011
0.0062 0.9012 0.0868 0.0045 0.0002 0.0007 0.0002 0.0002
0.0010 0.0356 0.9032 0.0562 0.0020 0.0006 0.0004 0.0010
0.0012 0.0047 0.0561 0.8825 0.0468 0.0063 0.0009 0.0015
0.0006 0.0033 0.0097 0.1102 0.7890 0.0747 0.0053 0.0072
0.0007 0.0012 0.0042 0.0107 0.0939 0.8051 0.0510 0.0332
0.0015 0 0.0015 0.0029 0.0205 0.1406 0.5717 0.2613


, (5)

(
0.9779 0.0211 0.0010
0.0729 0.8957 0.0314

)
.

Observe that P corresponding to M = 2 exhibits the monotonicity property, while its
counterpart for M = 7 does not. A detailed discussion of this property and its implications
is given on p. 457 of Bangia et al. (2002).

The respective probabilities Pi read:

(0.8948, 0.9073, 0.9398, 0.9445, 0.9127, 0.9158, 0.7387), (0.9779, 0.9686). (6)

Entries of the matrices

1.0000/0 0/0.9370 0/0.0446 0/0.0079 0/0 0/0 0/0 0/0.0105
0.0069/0 0.9932/0 0/0.9372 0/0.0490 0/0.0023 0/0.0077 0/0.0023 0/0.0015
0.0011/0 0.0392/0 0.9611/0 0/09338 0/0.0328 0/0.0107 0/0.0060 0/0.0167
0.0014/0 0.0052/0 0.0596/0 0.9344/0 0/0.8437 0/0.1129 0/0.0165 0/0.0269
0.0006/0 0.0036/0 0.0104/0 0.1166/0 0.8644/0 0/0.8561 0/0.0607 0/0.0832
0.0008/0 0.0013/0 0.0044/0 0.0113/0 0.1029/0 0.8791/0 0/0.6064 0/0.3936
0.0016/0 0/0 0.0016/0 0.0031/0 0.0225/0 0.1535/0 0.7740/0 0/1.0000


and (

1.0000/0 0/0.9539 0/0.0461
0.0746/0 0.9254/0 0/1.0000

)
equal Pi,j(1)/Pi,j(0).

5 Estimates and their interpretation

First, consider estimates for the setting without a macroeconomic dynamics. If M = 2,
then

~q = (0.9822, 0.8788), π1 = 0.9496, π2 = 0.0283, π3 = 0.0190, π4 = 0.0031.
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For M = 7,
~q = (0.8373, 0.9078, 0.7991, 0.9060, 0.8396, 0.9008, 0.7728) (7)

and the support of ~π consists of 11 binary vectors. The corresponding probabilities are:

π1 = 0.5747, π2 = 0.1137, π8 = 0.0271, π9 = 0.0555, π22 = 0.0500, π24 = 0.0102,

π33 = 0.0144, π34 = 0.0314, π35 = 0.0179, π65 = 0.0762, π100 = 0.0290.

Only the macroeconomic scenarios encoded by these binary vectors occur with a positive
probability.

For example, for M = 7 consider the outcome numbered by 8. Its probability is
π8 = 0.0271. According to our numbering of binary strings, ~χ(8) = (1, 1, 1, 1, 0, 0, 0). In
fact, the binary vector (1, 1, 1, 1, 1, 1, 1) is numbered first and the corresponding sum
equals: 1 · 26 + 1 · 25 + . . . + 1 · 20 = 128. For the vector (1, 1, 1, 1, 0, 0, 0) the sum is
1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = 128− 7 and, consequently, its number
is eight. Since 1 occupies the first four positions, this macroeconomic scenario is favorable
for the debtors rated by AAA, AA, A and BBB, in other words, for the investment-grade
debtors, while it is adverse for the debtors rated by BB, B and C, or the non-investment-
grade ones, because 0 stands at the remaining three positions. Consequently, depending
upon whether the synthetic economy in question is formed mainly by investment-grade or
mainly by non-investment-grade debtors, expansion or contraction features will prevail.
As a general term, a mild expansion or a mild recession could be appropriate in this case.
Remark that an analog of this macroeconomic scenario for M = 2 is (1, 0). Its probability
is π2 = 0.0283. The probabilities evaluated for M = 7 and M = 2 match each other pretty
well: the relative error is approximately 4%. Returning to the case of M = 7, observe that
under this macroeconomic scenario migrations of every debtor can be governed either by
the historical matrix P or by the following conditional migration matrix:

1.0000 0 0 0 0 0 0 0
0.0069 0.9932 0 0 0 0 0 0
0.0011 0.0392 0.9611 0 0 0 0 0
0.0014 0.0052 0.0596 0.9344 0 0 0 0

0 0 0 0 0 0.8561 0.0607 0.0832
0 0 0 0 0 0 0.6064 0.3936
0 0 0 0 0 0 0 1.0000


.

Its first four rows contain Pi,j(1), j = 1, 2, . . . , 8. The remaining three rows consist of
Pi,j(0), j = 1, 2, . . . , 8. To characterize migrations of the entire pool of debtors under this
macroeconomic scenario, the following conditional matrix has to be considered:

0.9119 0.0826 0.0039 0.0007 0 0 0 0.0009
0.0063 0.9097 0.0788 0.0041 0.0002 0.0006 0.0002 0.0001
0.0010 0.0363 0.9148 0.0449 0.0016 0.0005 0.0003 0.0008
0.0012 0.0047 0.0564 0.8874 0.0424 0.0057 0.0008 0.0014
0.0005 0.0028 0.0081 0.0925 0.6624 0.2000 0.0142 0.0195
0.0006 0.0011 0.0038 0.0096 0.0846 0.7252 0.1061 0.0689
0.0012 0 0.0012 0.0022 0.0158 0.1087 0.4418 0.4291


.
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Its entries are the weighted sums of the probabilities governing individual migrations. For
the credit class i, the weights are qi and 1− qi. That is, its first four rows are formed by
P̂i,j(1), j = 1, 2, . . . , 8, while the remaining three contain P̂i,j(0), j = 1, 2, . . . , 8. Since
π8 = 0.0271, we conclude that, according to our model, this matrix governs 2.7% of all
credit-rating migrations in the dataset.

Table 2: M = 7, conditional vs. historical migration probabilities, percentage of variation.
Upgrading Downgrading

Credit rating\Tendency Favorable Adverse Favorable

AAA 1.91 -16.27 138.39

AA 0.94 -9.22 90.24

A 1.29 -20.09 313.63

BBB 0.55 -9.40 159.97

BB 1.53 -16.04 167.69

B 0.91 -9.92 107.90

C 8.04 -22.72 64.23

Inserting the probabilities Pi from (6) and the weights ~q given in (7) into the formu-
las presented in Table 1, the percentages of variation of upgrading and of downgrading
probabilities against their historical counterparts are estimated for the case of M = 7.
These values are summarized in Table 2. Instead of the numbers 1, 2, . . . , 7 corresponding
to the index i in Table 1, the credit classes in Table 2 are referred to according to their
conventional names, AAA, AA, . . ., C. Also, the characterization of a macroeconomic
outcome in terms of the respective tendency variable, χi = 1 or χi = 0, is substituted by
the conceptual characterization, favorable or adverse. Note that, if a historical probability
exceeds its conditional counterpart, the corresponding percentage is negative.

Using the 8-th column of the matrix P in (4), the probabilities Pi given in (5) and
the weights ~q from (7) as inputs, the upper and lower bounds for the conditional default
probabilities are evaluated according to the formulas (3). The values are quoted in Table 3.
Both adverse and favorable for the respective credit classes macroeconomic scenarios are
covered. For each credit class, the bounds are not symmetric with respect to the historical
value: the lower bound is always tighter than the upper bound. The interval characterizes
the magnitude of variation of the default likelihood. Such an effect is consistent with
the original idea of coupling schemes as an instrument for modeling default cascades or,
equivalently, heavy tails of the loss distribution that are typical for an economic downturn.
See Kaniovski and Pflug (2007). To interpret conceptually this variation of the conditional
default probabilities, their frequencies during the period of observation have to be taken
into account. For example, consider the credit class BBB. The corresponding i = 4. Since
P4 = 0.9445, the tendency variable Π4 assumes, by (3), the value 1(0) with probability
0.9445(0.0555). Then the default probability 0.0014 (0.0039) characterizes 94.45% (5.55%)
of defaults of the debtors rated at BBB. In other words, in 94.45% of cases the probability
of default is 9.40% smaller than the historical value 0.0015, while in 5.55% of cases it is
159.97% larger than this value.
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Table 3: Bounds of conditional default probabilities.
Tendency\Credit rating AAA AA A BBB BB B C

Favorable 0.0009 0.0001 0.0008 0.0014 0.0061 0.0298 0.2019

Adverse 0.0026 0.0002 0.0042 0.0039 0.0195 0.0689 0.4291

The distribution of macroeconomic scenarios estimated for the setting without a macroe-
conomic dynamics accounts for the average macroeconomic condition during the period of
observation. Inside this time interval, there are expansions (subperiods favorable for all
debtors) as well as recessions (adverse for all debtors subperiods) and intermediate states,
mild expansions or mild recessions, that are favorable for some debtors and adverse for the
rest of the pool. Introducing a dynamics of macroeconomic states allows to identify the
statistical regularities of the succession of these phases of a business cycle. The following
~q, ~π and P were estimated for the dynamic setting with M = 2:

(0.9824, 0.8787), (0.9486, 0.0293, 0.0200, 0.0021), (8)
0.9745 0.0153 0.0096 0.0056
0.5206 0.2721 0.1875 0.0198
0.4144 0.3126 0.2398 0.0332
0.3078 0.2746 0.2752 0.1424

 .

Observe that the estimates for ~q and ~π match their static counterparts very well: the error
does not exceed 10−3. Then the static model is sufficiently precise to meet the upper limit
of 0.1% for the probability of undesirable credit events set by the Banking Supervision
Accords (recommendations on banking regulations) – Basel I, Basel II and Basel III –
issued by the Basel Committee on Banking Supervision (BCBS). In fact, the estimates
according to a more sophisticated method differ at most by 10−3 from the simpler ones.
Consequently, the error of the simpler estimator does not exceed 10−3.

The Markov chain governing macroeconomic states is hidden because tendency vari-
ables are not observed: economic statistics does not report separately recessions (expan-
sions) of firms rated as the investment-grade and as the non-investment-grade debtors.
According to P, the macroeconomic state (1, 1), favorable for all debtors, deteriorates
gradually: p1,2 is 60% larger than p1,3 and 173% larger than p1,4. This is a plausible
dynamics. A complete recovery, corresponding to (1, 1), is the most likely next macroeco-
nomic state for (1, 0), (0, 1) and (0, 0). In fact, pi,1, i = 2, 3, 4, are the largest entries in
the respective rows of P. This is again a natural dynamics given that (1, 1) is the most
likely macroeconomic scenario.

Dealing with a time-homogeneous Markov chain, an important question is whether it
is stationary or not. In formal terms, it corresponds to the following relation between
the transition matrix P of the chain and a distribution ~π over its states: ~πP = ~π. A
distribution satisfying this equation is called the steady-state distribution of the chain.
Conceptually, this is a distribution that persists in time: on the one hand, starting from
it, the chain will maintain this distribution at any time instant and, on the other hand,
the distribution of the chain at t will converge as t → ∞ to the steady-state for any
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choice of the initial distribution. For the given above Markovian matrix P the steady
state distribution equals:

(0.9448, 0.0291, 0.0198, 0.0062).

Since these values deviate at most by 0.005 from the probabilities ~π quoted in (8), the
hidden Markov chain seems to be stationary. Non-stationarity of this chain would imply
varying in time probabilities of the macroeconomic scenarios.

6 Conclusions

Within the CreditMetrics approach, the conditional migration probabilities dependent
upon the macroeconomic scenarios are proposed. Two cases are considered: with 2 and
7 non-default credit classes. The gap between conditional and the historical migration
probabilities is estimated. It typically increases as the creditworthiness decreases. This
is consistent with the commonly accepted view that riskier credit classes exhibit higher
volatility and they are stronger affected by the macroeconomic conditions than more secure
ones. In many cases, the variation of default probabilities exceeds 100%. The maximum
percentage for the period from 1991 to 2013 is 313.63. This is a compelling argument in
favor of the risk models based on the conditional probabilities, in particular, for stress
testing. Upgrading probabilities do not exhibit the same magnitude of variation for ev-
ery credit class: the percentage of increase of an upgrading probability due to favorable
macroeconomic conditions is smaller than the percentage of increase of a downgrading
probability due to averse macroeconomic conditions. This is consistent with the results
reported in the literature. See Fei et al. (2012), for example.

Probabilities of feasible macroeconomic scenarios are evaluated. To test robustness
of the estimates, a generalization of the model with macroeconomic scenarios evolving as
a finite Markov chain is considered. For the case of two non-default credit classes, the
estimates corresponding to the setting without and with the dynamics of macroeconomic
states coincide. Since the dynamics of macroeconomic states is stationary, probabilities of
the macroeconomic scenarios are time-homogeneous.
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Appendix 1
The credit ratings data for corporate and financial industry borrowers comes from S&Ps.
We have used Ratingsdirect database and RatingsXpress dataset in DataStream to down-
load the rating histories of all the available debtors from 35 OECD countries that had
been rated by the S&Ps agency in the period from 1991 to the end of 2013. The rating
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histories were used to reconstruct the credit ratings as at the end of each calendar year.
After removing empty or no-rating (NR) values and controlling for duplicates, we were
left with 13304 debtors coming from 34 countries (Latvia had no borrowers identified).
The following table lists the final sample composition:

Table 4: OECD countries covered.
Country Corporate debtors Financial debtors Total

Australia 193 168 361

Austria 16 51 67

Belgium 22 39 61

Canada 441 157 598

Chile 23 10 33

Czech Republic 6 13 19

Denmark 19 31 50

Estonia 1 0 1

Finland 19 28 47

France 148 285 433

Germany 128 750 878

Greece 12 14 26

Hungary 10 18 28

Iceland 1 2 3

Ireland 30 71 101

Israel 4 3 7

Italy 52 153 205

Japan 413 211 624

Korea, Republic of 50 29 79

Luxembourg 30 56 86

Mexico 88 47 135

Netherlands 107 111 218

New Zealand 32 65 97

Norway 19 25 44

Poland 11 19 30

Portugal 12 32 44

Slovakia 3 6 9

Slovenia 0 1 1

Spain 26 69 95

Sweden 60 67 127

Switzerland 35 78 113

Turkey 10 21 31

United Kingdom 353 355 708

United States of America 4340 3605 7945

Total 6714 6590 13304

Appendix 2
The estimates are based on 23 years of observation: t = 1 (T = 23) corresponds to 1991
(2013). The coupling scheme considered in Kaniovski and Pflug (2007) was used. Since
the static setting is a particular case, we present only the maximum likelihood function of
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the dynamic setting:

L(~π, ~q,P) =

T∏
t=1

2M∑
i=1

[~πPt−1]i
M∏

m1=1

v(t, ~χ(i),m1, ~q).

Here,

v(t, ~χ,m1, ~q) =

M+1∑
m2=1

Pm1,m2(χm1)(qm1 +
1− qm1

Pm1,m2

)I
t(m1,m2)

M+1∏
j=1, j 6=m2

qI
t(m1,j)
m1

and It(l, k) denotes the number of debtors who moved from the credit class l to the credit
class k in the period t.

The linear equality constraint
2M∑
j=1

πj = 1,

states that the values πj form a probability distribution. To guarantee that at every time
instant the i-th coordinate of a tendency vector assumes the value 1 with probability Pi,
it is required that

2M∑
j=1

[~πPt−1]jI{χ(j)
i =1} = Pi, i = 1, 2, . . . ,M, t = 1, 2, . . . , T.

Here, I{A} denotes the indicator function of a statement A. Since P is a Markovian
transition matrix, the following equality constraints must hold true:

2M∑
j=1

pi,j = 1, i = 1, 2, . . . , 2M . (9)

To prevent transitions to the states ~χ(i) such that πi = 0, it is required that:

[~πPt−1]i ≤ Dπi, i = 1, 2, . . . , 2M , t = 2, 3, . . . , T. (10)

Here, D denotes a positive constant. (In case quoted here, D = 150 is used for the
calculations.) Elements of ~q, P and ~π belong to [0, 1].

In the static setting, we can get rid of constraints (9) and (10) by letting P be equal
to the 2M × 2M identity matrix.
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