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Abstract

Three models of dependent credit-rating migrations are considered. Each of them
entails a coupling scheme and a discrete-time Markovian macroeconomic dynamics.
Every credit-rating migration is modeled as a mixture of an idiosyncratic and a com-
mon component. The larger is the pool of debtors affected by the same common
component, the stronger is the dependence among migrations. The distribution of the
common component depends on macroeconomic conditions. At every time instant,
the resulting allocation of debtors to credit classes and industries follows a mixture of
multinomial distributions.

Dealing with M non-default credit-classes, there are 2 theoretically possible
macroeconomic outcomes. Only few of them occur with a positive probability. Re-
stricting the macroeconomic dynamics to such outcomes simplifies estimation. A
heuristics for identifying them is suggested. Using the maximum likelihood method,
it was tested on a Standard and Poor’s (S&P’s) dataset.
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1 Introduction

CreditMetrics, the first available portfolio model for evaluating credit risk, is based on
credit migration analysis. It involves estimating the probability of moving from one credit
quality to another within a given horizon. The model was created by the JP Morgan
bank in 1997. See Gupton et al. (1997). Since 1999, it became part of the credit risk
management for almost all major banks.

Within this model, migrations of a debtor are treated as a trajectory of a time-
homogeneous Markov chain. Its transition matrix P is estimated as the time average of
migration counts reported by a rating agency. The corresponding transition probabilities
are referred two as historical or unconditional. The adjective ”historical” refers to the fact
that P is based on a long period of observation. (Under the assumption of stationarity, a
longer period of observation implies a more precise estimate of P.) The adjective ”uncon-
ditional” means that macroeconomic factors, like recession or expansion, are not explicitly
taken into consideration. Integrating the state of the economy into modeling, Bangia et
al. (2002), McNeil and Wendin (2007), Korolkiewicz and Elliott (2008), Frydman and
Schuermann (2008), Fei et al. (2012), Xing et al. (2012) extended this unconditional view
to a conditional perspective. Some of the models, entail a regime-switching matrix as
a means for modeling of macroeconomic dynamics. For example, analyzing data of the
National Bureau of Economic Research (NBER), Bangia et al. observe that that: ”While
the 1981-1998 regime-switching matrix implies that on average 17.8% of all quarters are
contraction quarters, the 1959-1998 regime-switching matrix predicts 20.9% of all quarters
to be contractions, indicating that the economic development over the last 20 years has
been relatively favorable. Moreover, recessions seem to be getting shorter as evidenced by
the maintain probability declining from 42.4% (1959-1998) to 30.8% (1981-1998)”. (See
p. 467.) Their quarterly 2 x 2 regime-switching matrix contains probabilities of the events
that a recession (expansion) now will be followed by a recession (expansion) in the next
quarter of a year. This is a probabilistic description of business cycles in the US economy.

Kaniovski and Pflug (2007) suggested a coupling scheme for rendering individual credit-
rating migrations dependent. The term coupling scheme means that every migration is
a weighted sum of two components, each governed by the same historical matrix P: an
idiosyncratic and a common one. The weights are realizations of Bernoulli random vari-
ables. Their probabilities of success determine the frequency of idiosyncratic migrations
among the corresponding debtors in the pool. In the simplest case, the probabilities are
specific for each credit class. In a more realistic setting, the probabilities depend on credit
class and industry. The conditional distribution of a common component depends on a
binary tendency variable. Such a variable is assigned to each non-default credit class. The
value 0 (1) implies an increased (smaller) probability of worsening of the credit quality.
Probabilities of migration towards more secure credit ratings are adjusted in the opposite
direction: they are higher (lower) if the value 1 (0) is taken. Considering M non-default
credit classes, a binary M-vector ) is necessary to define the conditional migration proba-
bilities of every debtor. Its ¢ -th coordinate y; is the binary variable assigned to the credit
class i. All other things equal, dependence among migrations is stronger, if the pool of
debtors affected by the same common component is bigger. In this sense, the model of



Kaniovski and Pflug (2007), where migrations of all debtors belonging to a credit class
entail the same common component, is characterized by the strongest dependence among
migrations. (Note that a credit class is the next largest, after the whole portfolio, classi-
fication group.) A weaker dependence pattern exhibits the coupling scheme suggested in
Wozabal and Hochreiter (2012). In this case, common components are conditionally inde-
pendent across debtors. (Because the conditional migration probabilities of each debtor
from a credit class 7 involve x;, migrations of such debtors are stochastically dependent.)
The model introduced in Boreiko et. al (2016), assigns a common component to every
combination of a non-default credit class and an industry. Since the same common com-
ponent affects here a smaller (larger) pool of debtors, dependence among migrations is
weaker (stronger) than under the assumptions of Kaniovski and Pflug (2007) (Wozabal
and Hochreiter (2012)).

Originally, coupling schemes were used for modeling of dependent credit-rating migra-
tions and losses generated by a portfolio. As a result of simulations, Kaniovski and Pflug
(2007) report cascades of defaults and a loss distribution with a heavy tail. Estimating
parameters of coupling schemes from historical migrations, it became clear that tendency
variables can be interpreted as macroeconomic factors. A business cycle entails two phases:
a recession and an expansion. A recession is characterized by higher (lower) downgrading
(upgrading) probabilities. For an expansion, the probabilities are adjusted in the opposite
direction. Considering one non-default credit class and associating the value 1 (0) with an
expansion (recession), the impact of a business cycle on credit rating migrations can be
encoded by a tendency variable. Introducing a dynamics of tendency variables, renders
coupling schemes a means for modeling macroeconomic dynamics.

Modeling migrations of debtors belonging to M non-default credit classes and S in-
dustries, there are M - S + 2™ parameters defining each of the three coupling schemes.
Out of these values, M - .S are the probabilities of success of Bernoulli random variables
determining the frequencies of idiosyncratic migrations and 2™ are the probabilities m;
assigned to the binary vectors (). (Since every coordinate takes on two values, there are
altogether 2™ binary M-vectors. To refer to them correctly, they have to be numbered.)

In this paper, a generalization involving a Markovian dynamics of tendency variables
is considered for each of the known coupling schemes. The corresponding maximum likeli-
hood estimators turn out to be a hard problem: dealing with M non-default credit classes
and S industries, there are M - S 4+ 2™ + 22M parameters. This is a huge number of
unknowns given that in many applications M = 7. The term 22 corresponds to the
number of entries of a Markovian 2™ x 2™ matrix P governing the dynamics of tendency
variables. Its entry p;; equals the probability that a binary vector ¥ is followed by
a binary vector Y\/). The majority of the binary vectors are attained with a vanishing
probability. Consequently, the corresponding macroeconomic scenarios can be ignored in
the risk analysis.* The heuristic suggested here exploits this fact: instead of all 2™ binary
vectors, a subset involving only significant, in certain sense, macroeconomic outcomes is

*The banking supervision Accords (recommendations on banking regulations) — Basel I, Basel II and
Basel III — issued by the Basel Committee on Banking Supervision (BCBS) set typically 0.1% as the upper
limit for the probability of undesirable credit events.



considered. If the subset contains N vectors, the corresponding Markovian N x N matrix
has N? entries. Consequently, instead of M -S+2M +22M only M-S+ N + N? parameters
have to be estimated. The heuristics and the estimators for identifying a set of significant
binary vectors constitute the contribution of this paper in the literature on modeling of
depending credit-rating migrations and business cycles.

The paper is structured as follows. Maximum likelihood estimators for static and
dynamic models are given in Section 2. A discussion of computation and conceptual
problems associated with estimating of dynamic models leads to a heuristics meant for
reducing of the number of unknowns. Section 3 describes the input data and justifies
the choice of M and industries for testing the models. The estimated parameters are
presented and discussed in Section 4. Comparing quantitatively the heuristic solutions
with the solutions for the static and the dynamic models, Section 5 concludes.

2 Why do we need a heuristics?

Let there be S > 1 industry sectors and M > 1 non-default credit classes. Consider likeli-
hood functions and estimators corresponding to the known coupling schemes. The models
are numbered by ¢ = 1, 2, 3, according to the chronological order of the corresponding
publications, beginning with the coupling scheme suggested in Kaniovski and Pflug (2007).
Since tendency variables do not evolve in time, we call such models static. The likelihood
functions L; are:

Lz(ﬁ7 Q) =AX lz(ﬁa Q),
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Containing probabilities 7; of macroeconomic scenarios Y\ as coordinates, the vector 7
defines a probability distribution on the set of all binary M-vectors. @ is an M x S matrix
with elements ¢; ;. Conceptually, ¢; s and 1—¢q; ; are the weights that determine the impact
of the idiosyncratic and the common component in a migration of a debtor belonging to a
credit class [ and an industry s. See, for details, Kaniovski and Pflug (2007), Wozabal and
Hochreiter (2012) and Boreiko et. al (2016). P denotes a Markovian (M + 1) x (M + 1)
historical migration matrix. Its entry F;; equals the probability that a debtor belonging
to credit class [ at time ¢ will move to credit rating j at time £+ 1. Because defaulted firms
receive the index M + 1, M + 1 is an absorbing state of this time-homogeneous Markov
chain. That is, Pyyy1,m41 = 1 and Py = 0, j = 1,2,..., M. Matrix P is known.
Typically, only entries P, ;, [ =1,2,...,M, j=1,2,..., M + 1, are quoted.

The coordinate x; of a binary vector Y affects the evolution of debtors from credit class

I modifying their migrations probabilities. The corresponding conditional distribution
P, () is defined by the following formulas:

PP i <1, PafQ =P it >1,
Pz,j(l)_{ 0 g M RIO= o=t

Here, b =P+ Py 1+ ...+ P, 1 =1,2,...,M. I'(s,my,my) denotes the number of
debtors in industry sector s that moved from credit class mj to credit class mso in period
t. T stands for the total number of periods of time, measured typically in quarters of a
year or in years.

In sum, entries of () and coordinates of © are the unknown parameters. Because
the term A does not contain unknowns, it can be ignored. Estimates for @ and @ are
obtained by maximizing In/;(7, Q) subject to linear inequality constraints, m; € [0, 1] and
q.s € [0,1], as well as linear equality constrains,
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Here I 4; denotes the indicator function of a statement A,

I — 1 if A holds true,
A} 7 0 if Ais false.

In the reality, macroeconomic conditions continuously change: expansions follow reces-
sions and vise versa. There is a stream of literature in financial modeling that accounts for
the effect of changing macroeconomic conditions on credit rating migrations. The coupling
schemes with a Markovian dynamics presented next, generalize the class of credit-risk mod-
els entailing a regime-switching matrix. See, among others, Bangia et al. (2002), Frydman
and Schuermann (2008), Fei et al. (2012).



Let II* be the a stochastic binary M-vector. We call it a tendency vector and its
coordinates are referred to as tendency variables. Then Y™, i = 1, 2, ,..., 2™ are
realizations of a tendency vector. To define a Markovian dynamics of tendency vectors, a
2M 5 2M Markovian matrix P and a distribution of II! are necessary. The entry p; ; of P
equals the probability that the macroeconomic outcome associated with Y follows the
macroeconomic outcome associated with x(:

pij =P{I =0 | Tif = Y@},

The distribution of ﬁt, t > 2, given that the distribution of I is 7, will be #P'~1. Here,
P!~ stands for the (t — 1)-th power of P. In particular,

P{II' = XV} = [7P");,

where [7P!~1]; denotes the j-th coordinate of #P'~!. Note that every static model is
a particular case of the corresponding dynamic model. It corresponds to P equal to
the 2M x 2M identity matrix Ion. This is a trivial dynamics in the sense that every
macroeconomic outcome follows itself with certainty.

Consider the likelihood functions of dynamic models:

Lz(ﬁaQap) =A X ll(ﬁanP)7
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7 estimated here is the distribution of II'. As compared with a static model, there are
additionally 22M

Estimates for 7, @) and P are obtained by maximizing In;(7, @, P). There are linear
equality constraints,

unknown parameters — entries of P.
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and non-linear (with respect to P) equality constraints,
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In addition to the linear inequality constraints, m; € [0,1], ¢;s € [0,1] and p;; € [0,1],
there are non-linear inequality constraints:

FPY; < Dy, j=1,2,...2M, t=23,....T

These non-linear inequality constraints prevent transitions to unattainable realizations of
tendency vectors. We say that a binary M-vector YY) is unattainable, if the corresponding
m; equals 0. D is a sufficiently large positive constant.

Each of the likelihood functions corresponds to a mixture of multinomial distributions.
According to Allman et al. (2009), estimating parameters of a multinomial distribution is a
difficult problem: there are multiple solutions. In our case, the huge number of unknowns
is an additional complication. In fact, the number of industry sectors S typically does
not exceed 12. The basic S&P’s classification distinguishes M = 9 non-default credit
ratings: AAA, AA, A, BBB, BB, B, CCC, CC and C. With a reduction, merging
CCC, CC and C in a single credit class C', M = 7 credit ratings are often considered
in the literature. In this case, there are 7- S +27 =7-5+ 128 and 7- 5 + 27 + 227 =
7 -5 + 16512 parameters to estimate for a static and, respectively, a dynamic model.
A desktop computer would require a couple of minutes in order to evaluate parameters
of a static model, while estimating parameters of a dynamic model is a hard task — a
single iteration of an optimization algorithm could require many hours. A less apparent
problem is the number of available transition counts. To obtain reliable estimates, it has
to substantially exceed the number of unknown parameters.

There is a conceptual argument demonstrating that only a few macroeconomic out-
comes or, equivalently, binary vectors are relevant for risk analysis. In fact, every practical
problem involves a threshold probability ¢ such that random events less likely than € can
be ignored. Then, given a threshold €, at most ¢! binary vectors should be considered.
Assuming equally probable elementary outcomes, this is a very conservative estimate.
Considering a set of elementary outcomes such that one of them occurs with probability
1—¢€ would be a better approach. For every ¢, each of such sets is contained in the support
of . Consequently, only binary vectors from the support of 7 are relevant for risk analysis

According to the heuristics described next, the state space of a dynamic model is
limited to the support of the corresponding static model. If the support contains N sample
points, an N x N Markovian matrix governing the macroeconomic dynamics has to be
estimated. This heuristic solution is always better than the corresponding static solution,
but, typically, it is not optimal. In particular, it cannot be optimal if the support of a
static model is a proper subset of the support of the corresponding dynamic model. In
any case, the heuristics is less demanding than the exact model in what concerns the
computational resources. An attractive feature of this simplification is that a heuristic
solution can be quantitatively compared with its static counterpart.

Let (QW, 7)) be parameters estimated for the static model 7. Consider the support
TV® = {gU, ¢G2) . UN)} of the distribution 7). Introduce likelihood functions
LY (J: Q,R) that are nested exclusively on binary vectors from TV ®):

L)(d,Q.R) = A x )(d,Q,R),
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Here, d is a vector with N; coordinates which defines a distribution on T 7408 dy is
the probability assigned to YU+). @Q denotes an M x S matrix with elements qQis- R is
an IN; x N; Markovian matrix whose entry 77 ; equals the probability that the state of
economy characterized by YU!) at time ¢ will be followed by the state corresponding to
)_('(jJ ) at t + 1. (To avoid bulky notations, the index ¢ is omitted in J: Q and R.)

Estimates d¥, Q" and R(®) are obtained by maximizing In l?(cz: @, R) subject to linear
equality constraints,

Ni Ni
de:l and ZTLJ:L J:1,2,...,NZ‘,
k=1 I=1

and non-linear equality constraints,

N;
Z[JRH]J‘H{XWZH =P, j=12,....M, t=12,... T
k=1 J

There are also linear inequality constraints, d; € [0,1], ;s € [0,1] and r7 s € [0,1], as well
as non-linear inequality constraints,

[dR'™Y; < Ddj, j=1,2,....,N;, t=23,...,T.

A solution obtained by this heuristics will not be, in general, an optimal solution for
the corresponding dynamic setting. However, since Nf is much smaller than 22 the
estimation problem is simpler.

Interpreting coordinates of a tendency vector as a binary representation of an integer,
let us number the binary strings in a descending order of the corresponding integers
assigning 1 to the binary vector with al coordinates equal to 1. In particular, if M = 2,
four elements of {0, 1}? appear in the following order:

W=11, ¥@P=@10, x®=(01, ¥¥=(0,0).

3 Input data

A S&P’s dataset containing credit-ratings migrations from 1991 through 2012 is used.
That is, time instant 1(7") corresponds to 1991 (2012). There are 94584 counts altogether.



The debtors belong to the OECD (Organization for Economic Co-operation and Develop-
ment) countries. Two combinations of M and S are considered: M = 7 with S =1 and
M =2 with § = 12.

If M = 7, the S&P’s credit classes AAA, AA, A, BBB, BB, B and C are num-
bered by 1, 2,..., 7. Considering two non-default credit classes, index 1(2) is assigned to
investment-grade (non-investment-grade) debtors. The investment-grade debtors are char-
acterized by the S&P’s ratings from AAA to BBB. The non-investment-grade debtors
are those who received a riskier rating, BB, B or C.

If S = 1 the debtors are not classified according to their industry. If S = 12, the
following industries are considered: 1 — aero, auto, capital goods, metal; 2 — consumer,
service; 3 — energy, natural resources; 4 — financial institutions; 5 — forest and building
products, homebuilders; 6 — health care, chemicals; 7 — high technology, computers, office
equipment; 8 — insurance, real estate; 9 — leisure time, media; 10 — telecommunications;
11 — transportation; 12 — utilities.

Given next matrices P were estimated as the time averages of the respective transition
counts:

0.8952 0.0981 0.0047 0.0008 0.0000 0.0000 0.0000 0.0011
0.0064 0.8983 0.0895 0.0045 0.0002 0.0007 0.0002 0.0001
0.0010 0.0362 0.9022 0.0566 0.0020 0.0007 0.0004 0.0010
0.0013 0.0049 0.0567 0.8806 0.0476 0.0065 0.0010 0.0015 [,
0.0006 0.0033 0.0100 0.1115 0.7862 0.0754 0.0055 0.0074
0.0008 0.0013 0.0044 0.0112 0.0949 0.8015 0.0520 0.0340
0.0015 0.0000 0.0015 0.0030 0.0213 0.1393 0.5693 0.2641

0.9776 0.0214 0.0010
0.0746 0.8935 0.0319 /-

4 Estimates

According to Allman et al. (2009), multiple solutions is a common complication while
estimating parameters of multinomial mixtures. In the case of a coupling scheme, apply-
ing the maximum likelihood method, two remedies for avoiding local minima have been
reported in the literature: the repeated use of different algorithms from an optimization
package in Boreiko et. al (2016) and the particle swarm algorithm, a heuristic global opti-
mization method, in Wozabal and Hochreiter (2012). We used two MATLAB solvers, the
Interior Point (IP) method and the Sequential Quadratic Programming (SQP) algorithm,
to estimate the parameters. For every model, both methods found the same solution.
Since a variety of initial approximations have been tried, it can be an indication that a
global maximum of the likelihood function was found. This positive experience is con-
sistent with what other researchers report about successful numerical implementations of
the maximum likelihood estimators for mixtures of multinomial, in particular binomial,
distributions. See, for example, Carreira-Perpindn and Renals (2000). In general, the
success of applying the IP algorithm to a dynamic estimator depends stronger, than when
the SQP method is used, on the choice of an initial approximation.



Note that the models 1 and 3 coincide if S = 1. First let us present estimates for the

static models.
S =1and M = 7. Matrices Q) and Q®:

(0.8359,0.9106, 0.7984, 0.9061, 0.8404,0.9010, 0.7708),

(0.8322,0.8647,0.9583,0.9545,0.9545,0.9067,0.7279).

Supports of distributions 72 and 7 contain 11 and 13 sample points. They are char-

acterized by the following relations:
=0.0277, 7§ = 0.0566, =L} = 0.0502,

mi") = 0.5723, w3 = 0.1130, n”

1
”54)

i =0.0304; 7l

=0.0104, 7Sy = 0.0151, x{}) = 0.0324, 7{)) = 0.0176, =L = 0.0745,

= 0.5343, 732 = 0.1756, x{? = 0.0221, 7{? = 0.0197,

) =0.0326, 712 = 0.0220, 72 = 0.0181, 7Y = 0.0363, 72 = 0.0198,
72 =0.0146, 72 = 0.0803, 72, = 0.0187, 72 = 0.0058.

In fact, Wé? = 0.0198, by our numbering of binary vectors, implies that according to
model 2 probability 0.0198 is assigned to the binary vector Y36 = (1,0,1,1,1,0,0). The
corresponding macroeconomic outcome is favorable for debtors belonging to the credit
classes AAA, A, BBB and BB, while it is adverse for debtors rated at AA, B and C.

S =12 and M = 2. Matrices Q(¥):

1.0000 1.0000 0.5531 0.3337 1.0000 0.9793 1.0000 1.0000 1.0000 0.9307 0.7852 0.6026
0.9833 0.9767 0.9924 0.9364 0.9567 0.9492 0.9433 0.8107 0.9677 0.9124 0.9794 0.9741
1.0000 1.0000 0.5531 0.3337 1.0000 0.9793 1.0000 1.0000 1.0000 0.9307 0.7852 0.6026
0.9318 0.9643 0.9760 0.9444 0.9283 0.9833 0.8862 0.9840 0.9613 0.8108 0.9591  0.9520 ’
1.0000 1.0000 0.5531 0.3337 1.0000 0.9793 1.0000 1.0000 1.0000 0.9307 0.7852 0.6026
0.6520 0.5680  0.4241 1.0000 0.6659 0.4951 0.7583 0.8083 0.4795 1.0000 0.6247  0.7857

Distributions #() and 72 are equal. The support of #1) as well as the support of 7

contains 3 sample points. The supports do not coincide, since
70 =0.9457, =l = 0.0319, #{" = 0.0224,

while

P = 0.9681, 7{¥ = 0.0095, 7¥ = 0.0224.

In fact, the support of #1) consists of (1, 1), (1, 0) and (0, 1), while the supports of 7(®)
contains (0, 0) instead of (0, 1).

Testing dynamic models, parameters of the exact models and of the heuristics were
estimated in the case of S = 12 and M = 2. The penalty parameter D = 200 was used in
all models. For S =1 and M = 7, only parameters corresponding to the heuristics were
estimated. The value of D used in the calculations was 30000.
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S =1 and M = 7. Matrices QY and Q® equal to

(0.8359,0.9109,0.7984, 0.9072, 0.8404, 0.9008, 0.7737),

and
(0.8352,0.8622,0.9583, 0.9546, 0.9546,0.9068, 0.7337).

These values resemble closely their counterparts for the static models.
Probabilities dl(l) and d§2) are:

dM = 05237, dV = 0.1400, d{" = 0.0277, d" = 0.0566, d'" = 0.0344,

dV =0.0262, d\") = 0.0362, d{" = 0.0270, d§ = 0.0234, d\}) = 0.0961,
dl) = 0.0087; d¥ = 0.4828, d{? = 0.2227, d¥ = 0.0092, d'? = 0.0539,
d? =0.0082, d¥ = 0.0030, d = 0.0422, d¥ = 0.0569, d'® = 0.0070,
d?) =0.0092, d\? =0.0826, d\? = 0.0161, d{2 = 0.0061.

These distributions are quite similar to their counterparts of the static models. (Recall

that supports of d® and 7 coincide. In particular, dgl) is assigned to the binary vector

(1,1, 1, 1, 0, 0, 0) listed third in the support of 7). The corresponding probability for
the static model 1 equals 775(;1) = 0.0277.) Markovian matrices RMW and R,

0.6826  0.1212 0.0209 0.0376 0.0052 0.0191 0.0293 0.0131 0.0121 0.0514 0.0076
0.5235 0.3640 0.0078 0.0149 0.0145 0.0142 0.0126 0.0241 0.0106 0.0115 0.0022
0.1216 0.0373  0.2247 0.0435 0.0445 0.0554 0.1460 0.0342 0.1261 0.1567 0.0101
0.3342 0.1684 0.0332 0.1812 0.0074 0.0879 0.0552 0.0473 0.0299 0.0476 0.0077
0.0780  0.0066 0.0113 0.0177 0.6882 0.0334 0.0609 0.0240 0.0072 0.0586  0.0142
0.5037 0.0911  0.0327 0.1915 0.0200 0.0573 0.0182 0.0408 0.0078 0.0301 0.0067 s
0.2485 0.1634 0.0497 0.0336 0.0219 0.0317 0.0984 0.1253 0.0800 0.1333 0.0143
0.2034 0.0973 0.0334 0.1309 0.0382 0.0433 0.0722 0.1344 0.0762 0.1518 0.0189
0.3582 0.0739 0.0366 0.1052 0.0151 0.0631 0.1158 0.0455 0.1320 0.0387 0.0159
0.3292 0.0165 0.0274 0.0931 0.0163 0.0071 0.0108 0.0083 0.0141 0.4734 0.0039
0.0299 0.0657 0.0158 0.1791 0.0097 0.0666 0.0137 0.1344 0.0654 0.2721  0.1477

and

0.9723  0.0164 0.0022 0.0035 0.0001 0.0000 0.0006 0.0027 0.0004 0.0006 0.0012 0.0001 0.0000
0.0404 0.9321 0.0035 0.0010 0.0012 0.0005 0.0038 0.0016 0.0007 0.0008 0.0140 0.0003 0.0001
0.0582  0.0105 0.6822 0.1671 0.0065 0.0022 0.0003 0.0151 0.0243 0.0080 0.0032 0.0215 0.0008
0.0003 0.0033 0.0025 0.8804 0.0007 0.0004 0.0235 0.0113 0.0001 0.0008 0.0759 0.0007 0.0001
0.0090 0.0003 0.0166 0.0145 0.9174 0.0015 0.0070 0.0059 0.0114 0.0041 0.0023 0.0012 0.0088
0.0005 0.0050 0.0680 0.0076 0.0001 0.9028 0.0026 0.0042 0.0054 0.0015 0.0002 0.0022 0.0001
0.0120 0.0273 0.0056 0.0310 0.0080 0.0103 0.8347 0.0297 0.0056 0.0007 0.0269 0.0039 0.0042 s
0.0042 0.0468 0.0041 0.0068 0.0003 0.0016 0.0226 0.7897 0.0032 0.0002 0.1184 0.0013 0.0006
0.0160 0.0260 0.0037 0.0056 0.0030 0.0009 0.0174 0.0303 0.8149 0.0030 0.0619 0.0154 0.0017
0.0129 0.0053 0.0094 0.0036 0.0001 0.0059 0.1165 0.0006 0.0029 0.7662 0.0539 0.0026 0.0200
0.0326  0.0245 0.0036 0.0027 0.0003 0.0004 0.0127 0.1079 0.0056 0.0025 0.8063 0.0005 0.0002
0.0012 0.0027 0.0001 0.0270 0.0081 0.0172 0.0003 0.0002 0.0001 0.0442 0.0013 0.8702 0.0276
0.0026  0.0137 0.0086 0.0009 0.0009 0.0002 0.0166 0.0052 0.0005 0.0037 0.0082 0.0014 0.9376

imply different macroeconomic dynamics. According to model 2, there is a strong tendency
for all states to recur: the smallest diagonal entry (meaning conceptually the maintain
probability) is 7“§2§ = 0.6822. Model 2 predicts this pattern only for the binary vectors
(1, 1,1, 1,1, 1, 1) and (1, 1, 0, 1, 0, 1, 0). The first outcome is favorable for all debtors
in the dataset, while the second outcome is favorable for debtors belonging to the credit

classes AAA, AA, BBB, B and it is not favorable for those rated at A, BB and C.
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S =12 and M = 2, exact models. Matrices Q(¥):

1.0000 1.0000 1.0000 1.0000 0.9945 1.0000 1.0000 0.9497 1.0000 1.0000 1.0000 1.0000
0.9702 0.9741 0.9671  0.9487 0.9370 0.9751 0.9239 0.8337 0.9694 0.8350 0.9579 0.9601 ’

1.0000 1.0000 1.0000 1.0000 0.9956 1.0000 1.0000 0.9507 1.0000 1.0000 1.0000 1.0000
0.9324 0.9643 0.9760 0.9445 0.9284 0.9833 0.8862 0.9840 0.9613 0.8108 0.9591 0.9521 ’

1.0000 1.0000 1.0000 1.0000 0.9956 1.0000 1.0000 0.9497 1.0000 1.0000 1.0000 1.0000
0.6520 0.5680  0.4241 1.0000 0.6659 0.4951 0.7583 0.8083 0.4795 1.0000 0.6247  0.7857

Distributions #® and Markovian matrices P() are identical for the three models:
) =0.9547, 7{? = 0.0206, 7. = 0.0060, 7\ = 0.0186;

0.9894 0.0006 0.0073 0.0026
0.0800 0.9098 0.0035 0.0067
0.6786 0.0976 0.1373 0.0866
0.2209 0.1613 0.3837 0.2340

The states (1, 1) and (1, 0) tend to persist. Their maintain probabilities are 0.9894 and
0.9098.

S =12 and M = 2, the heuristics. Matrices Q) and Q® coincide with their counter-
parts for the exact dynamic models, while QW) is identical to Q) estimated for the static
model. Distributions d¥ and Markovian matrices R(® are the same for all three models:

p) —

. , , | 0.9844 0.0000 0.0156
d” =0.9609, dS = 0.0268, d) =0.0122; R® = [ 0.0189 0.9470 0.0341
0.6683 0.0225 0.3093

(Note that supports of the distributions are different: d®) and d® are nested in (1,1), (1,0), (0,1),
whereas d® is nested in (1, 1), (1, 0), (0, 0).) The probabilities assigned to (1, 1) and

(1, 0) are close to to their analogs estimated for the exact dynamic models. Similar to what

is observed for the exact models, these states tend to persist: their maintain probabilities

are 0.9844 and 0.9470.

5 Comparison of exact solutions and heuristics

The suggested heuristics does not allow, in general, to identify an optimal solution for the
corresponding dynamic setting. In fact, considering S = 12 and M = 2, the support of an
optimal solution #® for the static setting for model  consists of three binary vectors for
each of the models. Consequently, the respective heuristic dynamics are nested in three
binary vectors. Their exact dynamic counterpart entails four binary vectors for each of

the models. All of the estimated distributions 7 (cf) and the corresponding matrices P (R)
satisfy the equation 7P = 7 (JR = cf) Consequently, all Markov chains formed by the
tendency vectors are tationary and 7 (Lf) is its steady-state distribution. In all cases, the
trivial Markovian dynamics, where each realization of a tendency vector follows itself with

probability one, is not optimal. This dynamics corresponds to the respective static model.
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Quantitatively, the improvement due to introducing a Markovian dynamics of tendency
vectors is characterized by the two tables given next. Recall that 79, Q) stands for an
optimal solution for the static model i. By [;(I?) we denote the optimal value of the exact
(heuristic) dynamic model. The comparison is possible because 7D Q) combined with
L (Iy,), the identity 2™ x 2M (N; x N;) matrix, is a feasible point for the estimator
of dynamic (heuristic) model 7. Tables 1 and 2 demonstrate that all dynamic solutions,
exact and heuristic, are better than their static analogs. For models 1 and 2, the heuristic
solution appears to be practically as good as the exact one.

Table 1. Dynamic vs. static models: likelihood ratio.

S=landM=7| S=12and M =2
1 =1 =2 1=11]2=2|1=3
p1257 | 1089 [ ,109.7

li
li (ﬁ(L) 7Q(Z) 712]M )
i

119 (70,00, Iy,)

26.4 37.6 6125'5 6108'7 €0.7

Table 2. Dynamic vs. static models, logarithmic scale: percentage of improvement.

S=landM=7| S=12and M =2
i—1]i=2 i=1]i=2]i=23
Inl;—Inl; (D ,Q0 1)
LT 100 - - 15.3 | 33.6 | 11.1
7 -0tV GO.Q0 1) 00 | 15 | 78 15.2 335 | 0.1
nt” (70,Q0),Iy,) ' ' ' ' '
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