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Abstract

We show how to construct power indices that respect proportionality

between power and weight from average representations of a game. If re-

stricted to account for the lack of power of dummy voters, average represen-

tations become coherent measures of voting power, such that the resulting

power distributions are proportional to the distribution of weights. Impos-

ing other restrictions may lead to a whole family of such power indices.
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1 Introduction

The observation that the distribution of power in weighted voting games differs

from the distribution of voting weights has motivated the development of a theory

of power measurement. A famous example considers three voters, having 49, 49,

and 2 votes. The motion is passed if the total number of votes in favor exceeds

50. Since any two voters can pass the motion, any reasonable power index assigns

equal power to all three voters.

The power distribution in the above example markedly differs from the relative

weight distribution:
∥
∥
(

49
100

, 49
100

, 2
100

) − (
1
3
, 1

3
, 1

3

)∥
∥

1
= 47

75
≈ 0.63. The main reason
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for this disagreement lies in the fact that voting weights are not unique. For

three voters having 100 votes in total, there will be 1176 integer-valued weight

distributions consistent with the above power vector. An example is given by

the weights 34, 33, 33 and a quota of 60. There would be 13872 possibilities to

represent the game if the integer quota were part of the specification.

Having plenty of representations to choose from, can we choose voting weights

that accurately reflect power measured by some index? The theoretical litera-

ture shows that, in general, we cannot, although there are particular cases in

which it may be possible. Recently (Houy & Zwicker, 2014) have characterized

a class of weighted majority games that admit a representation using their re-

spective Banzhaf distribution. For the nucleolus, we known that (q(x�, v), x�)

is a representation of a constant-sum weighted majority game, where x�(v) de-

notes the nucleolus of v, and q(x�, v) denotes the corresponding maximum excess

(Maschler et al., 2013, Theorem 20.52). If the weights are close to the average

weight of the voters, then the nucleolus is close to the relative weight distribu-

tion; the two may even coincide under certain conditions, see (Kurz et al., 2014).

The existing power indices are not representation-compatible. One exception is

the recently introduced minimum sum representation (MSR) index (Freixas &

Kaniovski, 2014), which has been specifically designed to be proportional to vot-

ing weights in the minimum sum representation of a weighted game. Also the

Colomer index (Colomer & Martinez, 1995) uses weights of a majority game in

its specification, but the index depends on the given representation, instead of

the underlying simple game.

We show how to define representation compatible power indices for weighted

majority games, and to make them fulfill certain useful properties. The indices

are based on average representations, which are already close to being coherent

power indices, but which fail the essential dummy property. If restricted to

account for the lack of power of dummy voters, average representations become

coherent measures of voting power, such that the resulting power distributions

are proportional to the distribution of weights in the average representation.

In the final section of the paper, we discuss how imposing other restrictions

may lead to other indices, and we discuss a convergence result for integer-valued

representations.

2 Games and representations

A simple game v is a mapping v : 2N → {0, 1}, where N = {1, . . . , n} is the set

of voters, such that v(∅) = 0, v(N) = 1, and v(S) ≤ v(T ) for all S ⊆ T ⊆ N .
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The subsets S ⊆ N are called coalitions of v. We call a coalition S winning

if v(S) = 1, and losing otherwise. If S is a winning coalition and none of its

proper subsets is winning, it is called a minimal winning coalition. Similarly, if

T is a losing coalition and none of its proper supersets is losing, it is called a

maximal losing coalition. The set of minimal winning coalitions Wm, or the set

of maximal losing coalitions Lm, uniquely define a simple game. A voter i ∈ N

with v(S) = v(S ∪ {i}) for all S ⊆ N\{i} is called a dummy.

A weighted majority game is a simple game v, such that there exist real num-

bers w1, . . . , wn ≥ 0 and q > 0 with
∑

s∈S ws ≥ q for all winning coalitions S ⊆ N

and
∑

s∈T ws < q for all losing coalitions T ⊆ N . We write v = [q; w1, . . . , wn],

where we call (q, w1, . . . , wn) a representation of v. A weight vector (w1, . . . , wn)

is called feasible for v, if there exists a quota q such that (q; w1, . . . , wn) is a rep-

resentation of v. For our initial example [2; 1, 1, 1], the weight vector (49, 49, 2)

is feasible, while (50, 25, 25) is not feasible.

Lemma 1 Each weighted majority game v admits a representation (q, w1, . . . , wn)

with w1, . . . , wn ≥ 0, q > 0, and

(1)
∑n

i=1 wi = 1, q ∈ (0, 1];

(2)
∑n

i=1 wi = 1, q ∈ (0, 1] and wi = 0 for all dummies i ∈ N ;

(3) q ∈ N, wi ∈ N.

We call a representation satisfying the conditions of (1) a normalized repre-

sentation, and those satisfying the conditions of (3) an integer representation. A

representation with wi = 0 for all dummies i ∈ N is called dummy-revealing.1

Algorithmic checks and descriptions of whether a given simple game is weighted

have been studied extensively in the literature, see e.g. (Taylor & Zwicker, 1999).

Lemma 2 The set of all normalized weight vectors w ∈ R
n
≥0,

∑n
i=1 wi = 1 be-

ing feasible for a given weighted majority game v is given by the intersection
∑

i∈S wi >
∑

i∈T wi for all pairs (S, T ), where S ⊆ Wm and T ⊆ Lm.

Lemma 3 The set of all normalized representations (q, w) ∈ R
n+1
≥0 , q ∈ (0, 1],

∑n
i=1 wi = 1 representing a given weighted majority game v is given by the inter-

section
∑

i∈S wi ≥ q,
∑

i∈T wi < q for all S ⊆ Wm and T ⊆ Lm.

1The problem of checking whether a voter is a dummy in a general (integer) representation
it coNP-complete (Chalkiadakis et al., 2011, Theorem 4.4).
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3 Power indices

Let Sn denote the set of simple games on n voters, and Wn the set of weighted

majority games on n voters. A power index for C ∈ {Sn,Wn | n ∈ N} is a

mapping g : C → R
n, where n denotes the number of voters in each game of C.

Usually, we define a vector-valued power index by defining its elements gi, the

power of a voter i ∈ N . The Shapley-Shubik index is given by

SSIi(v) =
∑

S⊆N\{i}

|S|!(|N | − 1 − |S|)!
|N |! · (v(S ∪ {i}) − v(S)).

The Shapley-Shubik index is symmetric, positive, efficient, and satisfies the

dummy property.

Definition 4 Let g : C → R
|N | = (gi)i∈N be a power index for C. We say that

(1) g is symmetric: if for all v ∈ C and any bijection τ : N → τ we have

gτ(i)(τv) = gi(v), where τv(S) = v(τ(S)) for all S ⊆ N ;

(2) g is positive: if for all v ∈ C we have gi(v) ≥ 0 and g(v) �= 0;

(3) g is efficient: if for all v ∈ C we have
∑n

i=1 gi(v) = 1;

(4) g satisfies the dummy property: if for all v ∈ C and all dummies i of v we

have gi(v) = 0.

We consider power indices that can be defined on the set of weighted games.

Having proportionality of weights and power in mind, we define:

Definition 5 A power index g : Wn → R
n for weighted majority games on n

voters is called representation compatible if (g1(v), . . . , gn(v)) is feasible for all

v ∈ Wn.

We remark that the Shapley-Shubik index is representation compatible for

Wn if and only if n ≤ 3. Below, we list the weighted majority games with up to

3 voters (in minimum sum integer representation), and the representation given
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by the Shapley-Shubik vector.

[1; 1] = [1; 1] [1; 1, 0, 0] =
[

6
6
; 6

6
, 0

6
, 0

6

]

[2; 1, 1, 1] =

[
4

6
;
2

6
,
2

6
,
2

6

]

[1; 1, 0] =

[
2

2
;
2

2
;
0

2

]

[1; 1, 1, 0] =
[

3
6
; 3

6
, 3

6
, 0

6

]

[3; 1, 1, 1] =

[
6

6
;
2

6
,
2

6
,
2

6

]

[1; 1, 1] =

[
1

2
;
1

2
,
1

2

]

[2, 1, 1, 0] =
[

6
6
; 3

6
, 3

6
, 0

6

]

[3; 2, 1, 1] =

[
5

6
;
4

6
,
1

6
,
1

6

]

[2, 1, 1] =

[
2

2
;
1

2
,
1

2

]

[1; 1, 1, 1] =
[

2
6
; 2

6
, 2

6
, 2

6

]

[2; 2, 1, 1] =

[
2

6
;
4

6
,
1

6
,
1

6

]

For n ≥ 4, consider the example v = [3; 2, 1, 1, 1, 0, . . . , 0] with n−4 dummies.

The Shapley-Shubik index of v is given by
(

1
2
, 1

6
, 1

6
, 1

6
, 0, . . . , 0

)

. Since {2, 3, 4} is

a winning coalition with weight 1
2
, and {1} is a losing coalition with an equal

weight, the Shapley-Shubik vector cannot be representation-compatible.

4 Representation-compatible power indices

Given a set of representations of the same weighted majority game v, each convex

combination also gives a representation of v. A simple way of constructing a

representation-compatible power index is to specify the set of representations

and the weights of the convex combination.

4.1 The average weight index

Definition 6 The average weight index of a weighted majority game v is the

average of all normalized 2 weight vectors which are feasible for v.

For [3; 2, 1, 1] we have already mentioned the sets of minimal winning and

maximal losing coalitions. Applying Lemma 2 gives the constraints

w1 + w2 > w1 ⇐⇒ w2 > 0

w1 + w3 > w1 ⇐⇒ w3 > 0

w1 + w2 > w2 + w3 ⇐⇒ w1 > w3

w1 + w3 > w2 + w3 ⇐⇒ w1 > w2,

2Taking all weight vectors instead of the normalized ones does not make a difference.
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in addition to w1, w2, w3 ≥ 0 and w1 + w2 + w3 = 1. Eliminating the variable w3

via w3 = 1 − w1 − w2 and removing the redundant constraints leaves

w2 > 0 ⇐⇒ w2 > 0

1 − w1 − w2 > 0 ⇐⇒ w2 < 1 − w1

w1 > 1 − w1 − w2 ⇐⇒ w2 > 1 − 2w1

w1 > w2 ⇐⇒ w2 < w1

Since we need 1−2w1 < w1 and 1−w1 > 0, we have w1 ∈
(

1
3
, 1

)

. For w1 ∈
(

1
3
, 1

2

)

the conditions condense to w2 ∈
(

1− 2w1, w1

)

and for w1 ∈
[

1
2
, 1

)

the conditions

condense to w2 ∈
(

0, 1 − w1

)

.

The (scaled) average weight for voter 1 is given by

∫ 1
2

1
3

∫ w1

1−2w1

w1 d w2 d w1 +

∫ 1

1
2

∫ 1−w1

0

w1 dw2 d w1 =
1

54
+

1

12
=

11

108
.

For voter 2 we similarly obtain

∫ 1
2

1
3

∫ w1

1−2w1

w2 d w2 d w1 +

∫ 1

1
2

∫ 1−w1

0

w2 d w2 d w1 =
1

48
+

5

432
=

7

216
.

Since the volume of the feasible region is given by

∫ 1
2

1
3

∫ w1

1−2w1

1 dw2 d w1 +

∫ 1

1
2

∫ 1−w1

0

1 dw2 dw1 =
1

8
+

1

24
=

1

6
,

we have

∫ 1
2

1
3

∫ w1

1−2w1

w3 d w2 dw1 +

∫ 1

1
2

∫ 1−w1

0

w3 d w2 d w1 =
1

6
− 11

108
− 7

216
=

7

216
.

Normalizing, or dividing by the volume of the feasible region, yields the power

distribution
(

11
18

, 7
36

, 7
36

)

, with a norm-1-distance of 1
9

to the respective Shapley-

Shubik vector
(

2
3
, 1

6
, 1

6

)

.

The above set of inequalities defines a polyhedron in Euclidean space:

P =
{

(w1, w2) ∈ R
2 | w2 ≥ 0, w2 ≤ 1 − w1, w2 ≥ 1 − 2w1, w2 ≤ w1

}

.

Note that we have replaced strict inequalities by the corresponding non-strict

inequalities, and considered the integral
∫

p
w1 d w1,

∫

p
w2 d w, and

∫

p
1 d w. This

modification is permitted since in general the polytope P (after the elimination
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of variable wn) is full-dimensional, i.e. it has dimension n − 1.

Lemma 7 For each weighted majority game v there exist positive real numbers

q̃, w̃1, . . . , w̃n−1 and a parameter α > 0 such that

(

q̃ + δ0, w̃1 + δ1, . . . , w̃n−1 + δn−1, 1 −
n−1∑

i=1

(w̃i + δi)

)

(1)

is a normalized representation of v for all δi ∈ [−α, α], 0 ≤ i ≤ n − 1.

Proof. Let (q, w1, . . . , wn) be an integer representation of v. The weight of each

winning coalition is at least q, and the weight of each losing coalition is at most

q−1. Since
(

(n+1)q, (n+1)w1+1, . . . , (n+1)wn

)

is also an integer representation

of v, we additionally assume w.l.o.g. that wi ≥ 1 for all 1 ≤ i ≤ n. One can easily

check that also
(

q − 2
5

+ δ̃0, w1 + δ̃1, . . . , wn + δ̃n

)

is a representation of v for all

δ̃i ∈
[− 1

5n
, 1

5n

]

, 0 ≤ i ≤ n. With s =
∑n

i=1 wi let q̃ = 1
s
· (q − 2

5

)

and w̃i = 1
s
· wi

for all 1 ≤ i ≤ n − 1. The choice of a suitable α is a bit fiddly (α = 1
10ns

does

work), but its existence is guaranteed by construction. �

Definition 8 For each weighted majority game v the (normalized) weight poly-

tope Pweight(v) is given by Pweight(v) =
{

w ∈ R
n
≥0 | ‖w‖1 = 1, w(S) ≥ w(T )∀ min.

winning S and all max. losing T
}

.

By fixing the quota at a suitable value we can directly conclude from Lemma 7:

Corollary 9 The n − 1-dimensional volume of Pweight(v) is non-zero for each

weighted majority game v.

Lemma 10 The average weight index of a weighted majority game v is given by

1
∫

Pweight(v)
d w

·
(∫

Pweight(v)

w1 d w, . . . ,

∫

Pweight(v)

wn dw

)

. (2)

4.2 The average representation index

As mentioned already in the introduction, one may consider the quota as being

part of the weighted representation. To this end we introduce:

Definition 11 The average representation index of a weighted majority game v

is the average of all normalized 3 representations of v.

3Taking all representations instead of the normalized ones does not make a difference.
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Definition 12 For each weighted majority game v the (normalized) representa-

tion polytope P rep(v) is given by

P rep(v) =
{

w ∈ R
n
≥0 |

n∑

i=1

wi = 1, w(S) ≥ q ∀S ∈ Wm, w(T ) ≤ q ∀T ∈ Lm
}

.

Using Lemma 3 and Lemma 7 we conclude:

Lemma 13 The average representation index of a weighted majority game v is

given by

1
∫

P rep(v)
d(q, w)

·
(∫

P rep(v)

w1 d(q, w), . . . ,

∫

P rep(v)

wn d(q, w)

)

. (3)

For our example v = [3; 2, 1, 1] we have

P rep(v) =
{

(q, w) ∈ R
4
≥0 |

3∑

i=1

wi = 1, w1+w2 ≥ q, w1+w3 ≥ q, w1 ≤ q, w2+w3 ≤ q
}

,

and

∫

P rep(v)

d(q, w) =

2
3∫

1
2

q∫

1−q

1−q∫

q−w1

d w2 d w1 d q +

1∫

2
3

q∫

2q−1

1−q∫

q−w1

d w2 dw1 d q

=
5

648
+

1

162
=

1

72
,

∫

P rep(v)

w1 d(q, w) =

2
3∫

1
2

q∫

1−q

1−q∫

q−w1

w1 dw2 d w1 d q +

1∫

2
3

q∫

2q−1

1−q∫

q−w1

w1 dw2 d w1 d q

=
31

7776
+

1

243
=

7

864
,

∫

P rep(v)

w2 d(q, w) =

2
3∫

1
2

q∫

1−q

1−q∫

q−w1

w2 dw2 d w1 d q +

1∫

2
3

q∫

2q−1

1−q∫

q−w1

w2 dw2 d w1 d q

=
29

15552
+

1

972
=

5

1728
,

so that the average representation index is given by
(

7
12

, 5
24

, 5
24

)

.

4.3 Properties of the new indices

The two newly introduced indices share several of the properties commonly re-

quired for a power index. Three of four properties in Definition 4 are satisfied.
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Lemma 14 The average weight and the average representation index are sym-

metric, positive, and efficient, satisfies strong monotonicity, but do not satisfy

the dummy property.

Proof. Symmetry, positivity, and efficiency are inherent in the definition of

both indices. The violation of the dummy property can be seen in the example

of the game [1; 1, 0]. �

The later shortcoming can be repaired using a quite general approach.

Lemma 15 Given a sequence of power indices gn : Cn → R
n for all n ∈ N,

let g̃n : Cn → R
n be defined via g̃n

i (v) = gm
i (v′) for all non-dummies i and by

g̃n
j (v) = 0 for all dummies j, where m is the number of non-dummies in v and v′

arises from v by dropping the dummies4 All g̃n satisfy the dummy property.

We call g̃n the dummy-revealing version of a given sequence of power indices

gn. For the computation of the dummy-revealing version we just have to compute

the dummy reduced game v′ and its corresponding power distribution.

The computations from Lemma 10 and Lemma 13 can easily be performed

using the software package LattE (Baldoni et al., 2014).

game av. weight av. rep. game av. weight av. rep.

[1; 1] (1) (1) [3; 2, 1, 1, 0]
(

67
120 , 47

240 , 47
240 , 1

20

) (
41
75 , 31

150 , 31
150 , 1

25

)

[1; 1, 0]
(

3
4 , 1

4

) (
5
6 , 1

6

)

[1; 1, 1, 1, 1]
(

1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

)

[1; 1, 1]
(

1
2 , 1

2

) (
1
2 , 1

2

)

[2; 1, 1, 1, 1]
(

1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

)

[2; 1, 1]
(

1
2 , 1

2

) (
1
2 , 1

2

)

[3; 1, 1, 1, 1]
(

1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

)

[1; 1, 0, 0]
(

2
3 , 1

6 , 1
6

) (
3
4 , 1

8 , 1
8

)

[4; 1, 1, 1, 1]
(

1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

)

[1; 1, 1, 0]
(

4
9 , 4

9 , 1
9

) (
11
24 , 11

24 , 1
12

)

[4; 2, 1, 1, 1]
(

23
48 , 25

144 , 25
144 , 25

144

) (
139
300 , 161

900 , 161
900 , 161

900

)

[2; 1, 1, 0]
(

4
9 , 4

9 , 1
9

) (
11
24 , 11

24 , 1
12

)

[3; 2, 1, 1, 1]
(

7
16 , 3

16 , 3
16 , 3

16

) (
43
100 , 19

100 , 19
100 , 19

100

)

[1; 1, 1, 1]
(

1
3 , 1

3 , 1
3

) (
1
3 , 1

3 , 1
3

)

[2; 2, 1, 1, 1]
(

23
48 , 25

144 , 25
144 , 25

144

) (
139
300 , 161

900 , 161
900 , 161

900

)

[2; 1, 1, 1]
(

1
3 , 1

3 , 1
3

) (
1
3 , 1

3 , 1
3

)

[3; 2, 2, 1, 1]
(

83
240 , 83

240 , 37
240 , 37

240

) (
103
300 , 103

300 , 47
300 , 47

300

)

[3; 1, 1, 1]
(

1
3 , 1

3 , 1
3

) (
1
3 , 1

3 , 1
3

)

[4; 2, 2, 1, 1]
(

83
240 , 83

240 , 37
240 , 37

240

) (
103
300 , 103

300 , 47
300 , 47

300

)

[2; 2, 1, 1]
(

11
18 , 7

36 , 7
36

) (
7
12 , 5

24 , 5
24

)

[5; 2, 2, 1, 1]
(

19
48 , 19

48 , 5
48 , 5

48

) (
23
60 , 23

60 , 7
60 , 7

60

)

[3; 2, 1, 1]
(

11
18 , 7

36 , 7
36

) (
7
12 , 5

24 , 5
24

)

[2; 2, 2, 1, 1]
(

19
48 , 19

48 , 5
48 , 5

48

) (
23
60 , 23

60 , 7
60 , 7

60

)

[1; 1, 0, 0, 0]
(

5
8 , 1

8 , 1
8 , 1

8

) (
7
10 , 1

10 , 1
10 , 1

10

)

[4; 3, 1, 1, 1]
(

3
5 , 2

15 , 2
15 , 2

15

) (
29
50 , 7

50 , 7
50 , 7

50

)

[1; 1, 1, 0, 0]
(

5
12 , 5

12 , 1
12 , 1

12

) (
13
30 , 13

30 , 1
15 , 1

15

)

[3; 3, 1, 1, 1]
(

3
5 , 2

15 , 2
15 , 2

15

) (
29
50 , 7

50 , 7
50 , 7

50

)

[2; 1, 1, 0, 0]
(

5
12 , 5

12 , 1
12 , 1

12

) (
13
30 , 13

30 , 1
15 , 1

15

)

[3; 3, 2, 1, 1]
(

449
840 , 227

840 , 41
420 , 41

420

) (
77
150 , 41

150 , 8
75 , 8

75

)

[1; 1, 1, 1, 0]
(

5
16 , 5

16 , 5
16 , 1

16

) (
19
60 , 19

60 , 19
60 , 1

20

)

[5; 3, 2, 1, 1]
(

449
840 , 227

840 , 41
420 , 41

420

) (
77
150 , 41

150 , 8
75 , 8

75

)

[2; 1, 1, 1, 0]
(

5
16 , 5

16 , 5
16 , 1

16

) (
19
60 , 19

60 , 19
60 , 1

20

)

[4; 3, 2, 2, 1]
(

193
480 , 31

120 , 31
120 , 13

160

) (
119
300 , 77

300 , 77
300 , 9

100

)

[3; 1, 1, 1, 0]
(

5
16 , 5

16 , 5
16 , 1

16

) (
19
60 , 19

60 , 19
60 , 1

20

)

[5; 3, 2, 2, 1]
(

193
480 , 31

120 , 31
120 , 13

160

) (
119
300 , 77

300 , 77
300 , 9

100

)

[2; 2, 1, 1, 0]
(

67
120 , 47

240 , 47
240 , 1

20

) (
41
75 , 31

150 , 31
150 , 1

25

)

Table 1: The average weight and average representation index for small games.

Table 1 lists the average weight representation and the average representation

index for all weighted majority games with up to four voters. We observe that the

4Given a weighted majority game v : 2N → {0, 1} with S = {i ∈ N | i is dummy}, we define
the dummy reduced game v′ : 2N\S → {0, 1} via v′(T ) = v(T ) for all T ⊆ N\S.
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so-called dual games obtain the same average weight and average representation

index, which can indeed be easily proved.

5 Conclusion and ideas for further research

We have shown how to construct power indices that respect proportionality be-

tween power and weight from average representations of a game. By restricting

the polytope implied by the set of minimal winning and maximal losing coalitions,

we can obtain a representation that is dummy-revealing. The resulting restricted

average representation is a coherent measure of power.

The above modification suggests that we can endow the indices with qualities

by tailoring the polytope. Indeed, the average representation can be tailored to

fulfill additional properties that may lead to other indices. For example, restric-

tions based on the equivalence classes of voters defined by the Isbell desirability

relation lead to a power index that ascribes equal power to all members of an

equivalence class. This resulting index is strictly monotonic in voting weight.

The average representations themselves may have other uses, too. They con-

veniently summarize the set of admissible representations of a weighted majority

game into a unique representation, which can then be compared to power distri-

butions of the classical power indices. The average representations can be used

to represent a game in simulation studies, much as we use the minimal sum rep-

resentation to list games in our tables. While each majority game has an infinite

number of representations, the number of possible partitions of all games with

a given number of voters is finite. This allows us to distinguish between games

according to their partitions in equivalence classes, and thus obtain a finite set

of games for a comparison between power indices.

We conclude the paper with a remark on integer weights. A normalization of

voting weights is unreasonable if they are to represent the number of shares of a

corporation, or the number of members of a political party. In these cases, we

require the weights to be integers. However, there is still an interpretation of our

indices in these cases, as the following convergence result suggests.

Let us return to the initial example in the introduction and consider the

weighted majority game v = [2; 1, 1, 1]. We have said that 1176 integer weight

vectors are feasible for v with a sum of weights 100. If we average those rep-

resentation, we obtain
(

100
3

, 100
3

, 100
3

)

or a relative distribution of
(

1
3
, 1

3
, 1

3

)

, which

is no surprise due to the inherent symmetry. Things get a bit more interesting

if one considers the weighted majority game v = [3; 2, 1, 1]. For a weight sum

of 100, we have 1601 different weight vectors, and the averaged relative weight

10



distribution is given by (0.608832, 0.195584, 0.195584). For a weight sum of 1000,

we obtain 166001 different weight vectors and (0.610888, 0.194556, 0.194556).

For a weight sum of 10000, we obtain 16660001 different weight vectors and

(0.611089, 0.194456, 0.194456). For a weight sum of 100000 we obtain 1666600001

different weight vectors and (0.611109, 0.194446, 0.194446). The averaged relative

weight distribution seems to converge to
(

11
18

, 7
36

, 7
36

)

, which is the average weight

index. This can be rigorously proven by numerically approximating the integrals

of the definition of the average weight index using grid points only, and consider-

ing the limit of increasingly finer equally distributed grids. The same is true if an

integer-valued quota is taken into account. At the limit, we would end up with

the average representation index. Furthermore, the dummy revealing property

can be transferred in this sense.
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