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Abstract

In a homogeneous jury the votes are exchangeable correlated Bernoulli random variables.
We derive the bounds on a homogeneous jury’s competence as the minimum and maximum
probability of the jury being correct, which arise due to unknown correlations among the
votes. The lower bound delineates the downside risk associated with entrusting decisions to
the jury. In large and not-too-competent juries the lower bound may fall below the success
probability of a fair coin flip - one half, while the upper bound may not reach a certainty.
We also derive the bounds on the voting power of an individual juror as the minimum and
maximum probability of her casting a decisive vote. The maximum is less than one, while the
minimum of zero can be attained for infinitely many combinations of distribution moments.
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1 Introduction

The literature on Condorcet’s Jury Theorem studies the expertise of a group of experts. In a

criminal jury the experts are sworn jurors whose common purpose is to convict the guilty and

acquit the innocent. The jury reaches its verdict by a formal vote. Under simple majority voting

rule, half the total number of votes plus one vote will suffice to reach a verdict.1

As each juror faces a dichotomous choice, we model the juror’s vote as a Bernoulli random

variable. We can thus measure individual competence by a juror’s probability of voting for the

correct alternative, and collective competence by the probability that a simple majority of the

jurors will vote correctly. A juror is said to be competent if his vote is more likely to be correct

than incorrect.

Condorcet’s Jury Theorem asserts that a group of competent and independent jurors is more

likely than any single juror to select the correct alternative. This likelihood, called Condorcet’s

probability, tends to a certainty as jury size increases. The classic version of the theorem assumes

independent votes (Young 1988, Boland 1989). However, the independence assumption is refuted

by empirical evidence (Heard and Swartz 1998, Kaniovski and Leech 2009). Moreover, stochastic

independence cannot be reconciled with commonalities and differences in jurors’ preferences,

information asymmetries and strategic behavior, as these factors will induce correlations between

the votes. The more recent literature studies the conditions for which the theorem remains valid,

also in the case of correlated votes.2

1Take the highest judicial authority of the United States, the U.S. Supreme Court. The court operates simple
majority rule. A full bench comprises nine justices. Provided at least six justices are present, the votes of half
the number of justices plus one will suffice to reach a verdict.

2See, Berg (1985, 1993), Ladha (1992, 1993, 1995), Berend and Sapir (2007), Peleg and Zamir (2008), Kaniovski
(2009), Kaniovski and Zaigraev (2009). Like the original Condorcet’s Jury Theorem, these generalizations assume
sincere voting. Jury models that consider the incentive to acquire information show that sincere voting is irrational
in the presence of informational asymmetries among jurors (e.g., Austen-Smith and Banks (1996), Feddersen and
Pesendorfer (1996, 1997)). In our analysis we abstract from the effect of the incentive to acquire information on
collective competence. In this our approach follows the tradition of the classic Condorcet’s Jury Theorem.
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In this paper we obtain the minimum and maximum Condorcet probability for a given

individual competence. The problem arises when individual competence is known, e.g. from

past decisions, whereas correlations among the votes are not known, e.g. because the jurors have

never voted together in the past. Our results thus contribute to a theory of optimal jury design

when the recipient of jury expertise is risk averse. The lower bound, which is consistent with

given individual competence, delineates the downside risk associated with entrusting decisions

to the jury. This probability can be substantially lower than Condorcet’s probability under

the assumption of zero higher order correlations obtained for simple majority rule in Kaniovski

(2009) and for an arbitrary voting rule in Kaniovski and Zaigraev (2009). The upper bound,

which represents the best case scenario, can be lower than one.

Condorcet’s Jury Theorem assumes a homogeneous jury in which all correlation coefficients

are equal to zero, while we consider homogeneous juries with correlated votes. In either case

the votes are exchangeable random variables. The probability of a voting profile depends on the

total number of correct votes in it, but not on their order. For example, in a jury consisting

of three jurors, the profiles (1, 1, 0), (1, 0, 1) and (0, 1, 1) would be equally probable, as each

contains two correct votes (denoted by 1). The homogeneous jury model is an example of a

representative agent model common to social sciences.

The probabilities of voting profiles and Condorcet’s probability are linear in the correlation

coefficients. The non-negativity of the former probabilities thus imposes linear constraints in

the optimization problem in which the latter probability is minimized or maximized. Finding

correlation coefficients that minimize or maximize Condorcet’s probability therefore amounts to

solving a linear programming problem. Sections 2 and 3 describe the model and present the

results. The linear programming approach used for evaluating the bounds on the competence

of a homogeneous jury can also be used to evaluate the bounds on the voting power of an
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individual juror as the minimum and maximum probability of casting a decisive vote. Section 4

is dedicated to this problem. The last section provides a summary and discussion of the results.

All proofs have been relegated to Appendix A. Appendices B and C provide two fully worked

examples for small juries.

2 The model

We model juror i’s vote as a realization vi of a Bernoulli random variable Vi. Juror i is correct

if vi = 1, and incorrect if vi = 0. Juror i’s individual competence is measured by his marginal

probability of being correct pi, such that P (Vi = 1) = pi and P (Vi = 0) = 1 − pi.

In a jury of n (n ≥ 3) jurors, the n-tuple of votes v = (v1, . . . , vn) is called a voting profile.

There will be 2n such voting profiles. Computing the probability of a correct verdict requires a

probability distribution on the set of voting profiles, which is the joint probability distribution

of n Bernoulli random variables. For independent Bernoulli random variables this distribution

is given by

π̄v =
n

∏

i=1

pvi

i (1 − pi)
1−vi .

Bahadur (1961) obtained the joint probability distribution of n correlated Bernoulli random

variables. Let Zi = (Vi − pi)/
√

pi(1 − pi) for all i = 1, 2, . . . , n, and

ci,j = E(ZiZj) for all 1 ≤ i < j ≤ n;

ci,j,k = E(ZiZjZk) for all 1 ≤ i < j < k ≤ n;

. . .

c1,2,...,n = E(Z1Z2 . . . Zn).
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Here, ci,j is the Pearson product-moment correlation coefficient. Higher order coefficients mea-

sure dependence between the general tuples of votes. Let Cx
n denote the binomial coefficient

Cx
n = n!/[x!(n − x)!] for n, x ∈ N, where Cx

n = 0 for n < x. There will be
∑n

i=2 Ci
n = 2n − n − 1

correlation coefficients of all orders, which together with n marginal probabilities uniquely define

the joint probability distribution of n correlated Bernoulli random variables:

πv = π̄v

(

1+
∑

i<j

ci,jzizj +
∑

i<j<k

ci,j,kzizjzk + · · ·+c1,2,...,nz1z2 . . . zn

)

, where
∑

v

πv = 1. (1)

In the above equation, zi = (vi − pi)/
√

pi(1 − pi) denotes a realization of the random variable

Zi. In the following we assume that n and p are known but the correlation coefficients are not.

Bahadur’s (1961) representation makes clear that first and second moments alone (expected

values and a correlation matrix between the votes) do not uniquely define the joint probability

distribution of correlated Bernoulli random variables, and hence also not Condorcet’s probabil-

ity. A complete specification of the probability distribution requires the inclusion of higher order

coefficients, which are prohibitively numerous. This fact is important since the majority of exist-

ing extensions of Condorcet Jury Theorem to correlated votes discuss second-order correlations

only (e.g., Boland 1989, Boland, Proschan and Tong 1989, Ladha 1992, Ladha 1993).

2.1 Homogeneous jury

This paper studies the simplest extension of Condorcet’s Jury Theorem to correlated votes. We

relax the independence assumption while maintaining the homogeneity of the jury, which is now

is defined as:

Definition 1. In a homogeneous jury each vote has an equal probability of being correct, and

all correlation coefficients of the same order are equal.
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In a homogeneous jury the votes are exchangeable random variables. Formally, the joint

probability distribution of an exchangeable sequence is invariant under permutation of its ar-

guments. We can thus index the probabilities of voting profiles according to the number of

incorrect votes (zeros) they contain. Intuitively, exchangeability introduces symmetry on the

jurors.

Let pi = p ∈ (0.5, 1) for all i = 1, 2, . . . , n and

ci,j = x2 for all 1 ≤ i < j ≤ n;

ci,j,k = x3 for all 1 ≤ i < j < k ≤ n;

. . .

c1,2,...,n = xn.

The total number of correlation coefficients is n − 1. Since the total number of incorrect votes

k(v) = n−
∑n

i=1 vi ranges from 0 to n, there will be n+1 distinct probabilities πk, k = 0, 1, . . . , n.

From Bahadur’s distribution (1), we obtain

πk = pn−k(1 − p)k + x2p
n−k−1(1 − p)k−1

[

C2
n−k(1 − p)2 − C1

n−kC
1
kp(1 − p) + C2

kp2
]

+

. . . + xjp
n−k− j

2 (1 − p)k−
j

2

[

Cj
n−k(1 − p)j − Cj−1

n−kC
1
kp(1 − p)j−1 + . . . + (−1)jCj

kp
j
]

+

. . . + (−1)kxnp
n
2 (1 − p)

n
2 .

George and Bowman (1995) provide a more compact representation of the above probabilities.

Let λk = P (V1 = 1, V2 = 1, . . . , Vk = 1), k = 1, 2, . . . , n (of course, λ1 = p), and λ0 = 1. Then,

πk =

k
∑

j=0

(−1)jCj
kλn−k+j = ∆k(λn−k), (2)
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where ∆k(λn−k) denotes the k-th finite difference of λn−k. In the same paper, authors state the

relation between {xk} and {λk}:

xk =

∑k−2
j=0(−1)jCj

kp
jλk−j + (−1)k−1(k − 1)pk

p
k
2 (1 − p)

k
2

, k ≥ 2. (3)

3 Competence of a jury

To avoid the need for a tie-breaking rule, we assume that n is odd. Condorcet’s probability is

the probability of at most n−1
2 failures in n Bernoulli trials:

Mn,p(x2, x3, . . . , xn) = Mn,p(λ2, λ3, . . . , λn) =

n−1

2
∑

k=0

Ck
nπk. (4)

To illustrate the quantities involved, consider a numerical example for n = 3 and p = 0.75.

Eight conceivable voting profiles may occur with the probabilities listed in Table 1.

Table 1: Examples of joint probability distributions
(n = 3, p = 0.75)

v1 v2 v3 k πk

1 1 1 0 0.625 0.422 0.250
1 1 0 1 0 0.141 0.250
1 0 1 1 0 0.141 0.250
0 1 1 1 0 0.141 0.250
1 0 0 2 0.125 0.047 0
0 1 0 2 0.125 0.047 0
0 0 1 2 0.125 0.047 0
0 0 0 3 0 0.016 0

x2 0.333 0 -0.333
x3 0.770 0 -0.385

M3,p 0.625 0.844 1.000

The competence of a jury is measured by Condorcet’s probability M3,p = π0 + 3π1. In the

example on the left this probability is at its minimum of 0.625. In the case of independent votes
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this probability equals 0.844. On the right we have the maximum probability of one.

Notice distinct vanishing probabilities in the distributions corresponding to the bounds:

(π1, π3) for the lower, and (π2, π3) for the upper. We shall see that the pattern behind the

vanishing probabilities is the key to finding the correlation coefficients.

3.1 Linear programming problems

We seek the minimum and maximum Condorcet probabilities for given odd n and p:

min
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn), max
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn).

Since the correlation coefficients enter Mn,p linearly, and the non-negativity of the probabilities

πk imposes n + 1 linear constraints, finding correlation coefficients that minimize or maximize

Mn,p for given n and p amounts to solving the linear programming problems:

Mn,p(x2, x3, . . . , xn) → min subject to πk ≥ 0, k = 0, 1, . . . , n; (5)

Mn,p(x2, x3, . . . , xn) → max subject to πk ≥ 0, k = 0, 1, . . . , n. (6)

In view of George and Bowman’s (1995) results one can substitute the correlation coefficients

{xk} by probabilities {λk}.

The probabilities πk depend on the parameters n, p and the unknowns x2, x3, . . . , xn accord-

ing to (2). The above problems can be written in the standard form as:

aTx → min subject to Ax ≤ b; (7)

aTx → max subject to Ax ≤ b, (8)
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where a ∈ R
n−1, b ∈ R

n+1 and A ∈ R
n+1 × R

n−1; and in the dual form as:

bTu → min subject to ATu = −a, ui ≥ 0, i = 0, 1, . . . , n; (9)

bTu → min subject to ATu = a, ui ≥ 0, i = 0, 1, . . . , n. (10)

The Duality Theorem says that if x∗ and u∗ are the solutions of the primal Problem (7) and the

corresponding dual Problem (9), then aTx∗ = −bTu∗; while if x∗ and u∗ are the solutions of the

primal Problem (8) and the corresponding dual Problem (10), then aTx∗ = bTu∗.3 The above

primal linear programming problems involve n − 1 variables and n + 1 constraints. Typically,

problems of this size can only be solved numerically, e.g. using the simplex method. Fortunately,

a closer look at the dual problems revealed that the solutions of the primal problems satisfy the

systems of linear equations formed by vanishing probabilities πk.

Theorem 1. The solutions to Problem (5) satisfy the system of n − 1 linear equations:

π1 = 0, . . . , πn−1

2

= 0, πn+3

2

= 0, . . . , πn = 0. (11)

Moreover,

min
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) =
n(2p − 1) + 1

n + 1
.

The solutions to Problem (6) for p < n+1
2n satisfy the system of n − 1 linear equations:

π0 = 0, . . . , πn−3

2

= 0, πn+1

2

= 0, . . . , πn−1 = 0, (12)

3For an exposition of duality theory, see, e.g., Korte and Vygen (2008, Ch. 3).
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while for p > n+1
2n they satisfy the system of n+1

2 linear equations:

πn+1

2

= 0, . . . , πn = 0. (13)

For p = n+1
2n the solutions to Problem (6) satisfy:

π0 = 0, . . . , πn−3

2

= 0, πn−1

2

= 1/C
n−1

2
n , πn+1

2

= 0, . . . , πn = 0.

Moreover,

max
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) = min

{

2np

n + 1
, 1

}

.

Proof of Theorem 1 is given in Appendix A. In Appendix B we provide a complete analysis

for n = 3.

Remark (Uniqueness): Systems of linear equations (11) and (12) have unique solutions and

the solutions of corresponding linear programming problems are therefore also unique. System

(13) has a unique solution for n = 3, and infinitely many solutions for any odd n ≥ 5.

By solving systems (11) and (12) one can find those values of correlation coefficients which

minimize or maximize Condorcet’s probability. In particular, minimizing Condorcet’s probabil-

ity, we get the following interesting result (see proof in Appendix A):

Corollary 1. For any given odd n and p, Condorcet’s probability attains a unique minimum for

x2 = 2p−1
2p or λ2 = 3p−1

2 .

Corollary 1 establishes that in a homogeneous jury, regardless of jury size n, Condorcet’s

probability is minimal when the second-order correlation coefficient x2 = 2p−1
2p . Figure 1 illus-

trates how minMn,p,maxMn,p vary in n and p. We have,
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1. min Mn,p → (2p − 1) > 0 for n → ∞ and p ∈ (0.5, 1);

2. min Mn,p is linear and increasing in p. For p > 3n−1
4n , min Mn,p > 0.5.

In the case of the upper bound, we have maxMn,p = 1 for p ≥ n+1
2n , while for p < n+1

2n :

1. max Mn,p → 1 for n → ∞, p ∈ (0.5, 1), and maxMn,p ≥ 0.75;

2. max Mn,p is linear and increasing in p.

Finally, the range of Condorcet’s probabilities is given by

R = maxMn,p − minMn,p = min

{

n − 1

n + 1
,
2n(1 − p)

n + 1

}

.

We have R → 0 as p → 1. In the case of a low p, R ∈ [0.5, 1) does not depend on p, and R → 1

as n → ∞.

Figure 1: minMn,p and maxMn,p as functions of n and p:
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The left panel plots the bounds as a function of n for p = 0.51 (diamonds)
and p = 0.60 (bullets). For a comparison we add Condorcet’s probabilities
for independent votes (overlaid lines). The right panel plots the minimum
and the maximum (solid lines) as a function of p for n = 5, and Condorcet’s
probability for independent votes (dashed line).
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4 Voting power of a juror

The classic measures of voting power by Penrose (1946) and Banzhaf (1965), or Shapley and

Shubik (1954) have been criticized for treating all voting profiles as equally likely.4 In the case of

the Penrose-Banzhaf measure this assumption is equivalent to a binomial model, in which each

vote has an equal probability of being for or against and all votes are stochastically independent.

Both assumptions are widely refuted by empirical evidence (Gelman, Katz and Bafumi 2004).

The binomial model has been deemed appropriate in the absence of information on the future

behavior of voters and the issues they will face. Such is the case at the constitutional stage of

a voting assembly, in which voting weights and a decision rule are agreed. This information is

sufficient in order to know who will be decisive in each voting profile. What is unknown at this

stage is the probability with which each profile will occur. This probability will depend on the

voting behavior. The uncertainty shrouding the latter gives rise to the bounds on voting power

as the probability of casting a decisive vote.

Exchangeable votes offer the least restrictive stochastic model of individual voting behavior

that still provides a degree of ‘a prioriness’ in the calculus of power. Exchangeability entails a

stochastic representative agent model. It should be understood as an extension of the behavioral

part of the calculus of power. The fact that, in general weighted voting games, the votes may

carry different voting weights makes them obviously non-exchangeable in the common sense of

the word. Our proposal is a compromise between a measure of voting power based on completely

general probabilities in Laruelle and Valenciano (2004, 2005) and Kaniovski (2008), and the a

priori view on the measurement of power advocated in Felsenthal and Machover (2005).

In a symmetric simple-majority game with an odd number of voters a voter is decisive if she

4For a history of ideas behind the measurement of voting power, see Felsenthal and Machover (2004). For a
comprehensive treatment of the topic, see Felsenthal and Machover (1998).
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breaks a tie. We shall therefore consider situations in which exactly n
2 votes are in favor so that

the n+1’s vote is decisive, where n is taken to be even. There will be C
n
2
n such profiles. In other

words, we study the joint probability distribution of all votes except the vote whose power is

being measured. The voting power is measured by the following probability:

Pn,p(x2, x3, . . . , xn) = C
n
2
n πn

2
.

Clearly, finding min Pn,p and maxPn,p amounts to finding minπn
2

and max πn
2
. We can now

formulate the corresponding linear programming problems.

4.1 Linear programming problems

We seek the minimum and maximum probabilities of a tie, min πn
2

and maxπn
2
, for given even

n ≥ 2 and p ∈ (0.5, 1):

min
x2,x3,...,xn

πn
2
(x2, x3, . . . , xn), max

x2,x3,...,xn

πn
2
(x2, x3, . . . , xn).

Finding correlation coefficients that minimize or maximize πn
2

for given n and p leads to the

linear programming problems:

πn
2
(x2, x3, . . . , xn) → min subject to πk ≥ 0, k = 0, 1, . . . , n; (14)

πn
2
(x2, x3, . . . , xn) → max subject to πk ≥ 0, k = 0, 1, . . . , n. (15)

Although voting power is bounded between 0 and 1 as a probability, exchangeability imposes

constraints on the joint probability distribution, so that these bounds may not be attained.

However, it is easy to see that min Pn,p = 0 indeed, which holds when πn
2

= 0. What is remark-
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able about this otherwise obvious result is that it holds for a infinite number of combinations

x2, x3, . . . , xn, thereby the ubiquitous Pearson measure of dependence x2 can be close to zero.

This result is simple to prove so we omit its proof, except for n = 4 in Appendix C.5 Instead

we show that for p > 0.5, maxPn,p < 1. Indeed, the equality max Pn,p = 1 is attained only if

πn
2

= 1/C
n
2
n , in which case all other profiles occur with zero probability. Our second theorem

shows this to be impossible in a homogeneous jury.

Theorem 2. The solutions to Problem (15) satisfy the system of n − 1 linear equations:

π1 = 0, . . . , πn
2
−1 = 0, πn

2
+1 = 0, . . . , πn = 0. (16)

Thus,

max
x2,x3,...,xn

πn
2
(x2, x3, . . . , xn) =

1 − p

C
n
2

n−1

, x∗
2 = 1 − n

2p(n − 1)
, π0 = 2p − 1,

and

max
x2,x3,...,xn

Pn,p(x2, x3, . . . , xn) = 2(1 − p).

5 Summary

In a homogeneous jury votes are exchangeable random variable may be positively or negatively

correlated. We evaluate the bounds on the probability of a homogeneous jury collectively reach-

ing a correct decision when the exact dependences among the jurors are unknown. Typically,

both the upper bound and the lower bound will depend on jury size n (n is odd) and the

5A proof in the general case is available from the authors upon request.
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individual probability of casting a correct vote p. These are given by:

min
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) =
n(2p − 1) + 1

n + 1
;

max
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) = min

{

2np

n + 1
, 1

}

.

The upper bound increases with jury size n, while the lower bound decreases with n. Increasing

n will increase the range of admissible Condorcet probabilities, but the drop in the lower bound

becomes successively smaller as n increases. Higher individual competence increases the jury’s

competence, and the bounds increase in p.

Recall that x2 is the Pearson product-moment correlation coefficient, a ubiquitous measure

of stochastic dependence. For x2 > 0, Condorcet’s probability attains its unique minimum when

x2 = 2p−1
2p . Since Condorcet’s probability depends on coefficients of all orders, the downside

risk associated with the unknown higher order dependencies is highest when the above relation-

ship holds. Remarkably, the above relationship does not depend on n; it is valid for any jury

comprising an odd number of jurors.

Can the collective competence of this jury fall below the ‘competence’ offered by a toss of a

fair coin? For p ≥ 3
4 , the lower bound is strictly larger than 1

2 . For 2
3 < p < 3

4 , the lower bound

may exceed 1
2 only for small n. For p ≤ 2

3 , the lower bound cannot exceed 1
2 for any n; it will

equal 1
2 only when p = 2

3 and n = 3. This shows that a fair coin can outperform a large jury

comprising not-too-competent jurors. The upper bound is always at least equal to 3
4 .

Our second theorem establishes that in a homogeneous jury the probability of casting a
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decisive vote is less than one, while it can be zero for infinitely many combinations of moments:

min
x2,x3,...,xn

Pn,p(x2, x3, . . . , xn) = 0;

max
x2,x3,...,xn

Pn,p(x2, x3, . . . , xn) = 2(1 − p).

All other things equal, positive second-order correlation decreases the likelihood of ties, while

negative correlation increases it. The intuition that power vanishes when the votes are perfectly

positively correlated because ties cannot occur if every member votes the same way is correct,

but perfect positive second-order correlation is not a necessary condition when higher-order cor-

relations are present. There will be an infinite number of combinations of correlation coefficients

of all orders that lead to zero power. In fact the smallest admissible Pearson correlation coeffi-

cient can be close to zero, which is remarkable in light of the fact that zero Pearson correlation

is often mistakenly taken for stochastic independence. While this is true for Gaussian random

variables, whose joint probability distribution function is completely characterized by the first

two moments, zero second-order correlation between n > 2 Bernoulli random variables does not

imply their independence. Higher order correlations matter.

Equally intuitively, the smaller the second-order correlation between the votes is, the higher

the voting power should be. The intuition that power should increase as the correlation between

the votes decreases is correct in principle, but its lower bound is size dependent.

We conclude by emphasizing that homogeneity is an assumption one would be reluctant

to make in the presence of more specific information about the competence and dependence

structure of the jury. Our results offer a benchmark against which the expertise of particular

heterogeneous juries can be compared. The complexity of the optimization problem is such that

for heterogeneous juries the bounds on Condorcet’s probability should be computed numerically.
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A Proofs

Proof of Theorem 1. Let us express Problems (7) and (8) in terms of λ2, . . . , λn (λ0 = 1, λ1 = p)

using (2). The probabilities πk and Condorcet’s probability look as follows:

πk =

k
∑

j=0

(−1)jCj
kλn−k+j, for 0 ≤ k ≤ n − 2;

πn−1 = p +
n−1
∑

j=1

(−1)jCj
n−1λj+1;

πn = 1 − np +

n
∑

j=2

(−1)jCj
nλj;

Mn,p(λ2, λ3, . . . , λn) =

n−1

2
∑

k=0

Ck
n

k
∑

j=0

(−1)jCj
kλn−k+j =

n
∑

i=2

aiλi,

where a2 = · · · = an−1

2

= 0, an+1

2
+i = (−1)iC

n−1

2
−i

n Ci
n−1

2
+i

, i = 0, 1, . . . , n−1
2 .

Therefore, in dual Problems (9) and (10), b = (0, . . . , 0, p, 1 − np)T , a = (a2, a3, . . . , an)T ,

AT =











































0 0 0 . . . 0 −1 C1
n−1 −C2

n

0 0 0 . . . −1 C1
n−2 −C2

n−1 C3
n

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 −1 . . . −Cn−5
n−3 Cn−4

n−2 −Cn−3
n−1 Cn−2

n

0 −1 2 . . . Cn−4
n−3 −Cn−3

n−2 Cn−2
n−1 −Cn−1

n

−1 1 −1 . . . −1 1 −1 1











































.

Consider the system of equations AT u = −a from dual Problem (9). This system comprises

n − 1 equations and n + 1 unknowns. By solving the above system of equations, the number of

17



variables in Problem (9) is reduced from n + 1 to 2, since

ui = Ci
n−1un−1 − (n − 1 − i)Ci

nun + Ci
n, for i = 0, . . . ,

n − 1

2
;

ui = Ci
n−1un−1 − (n − 1 − i)Ci

nun, for i =
n + 1

2
, . . . , n − 2.

Therefore, the set of constraints ATu = −a, ui ≥ 0, i = 0, 1, . . . , n, becomes

Ci
n−1un−1 − (n − 1 − i)Ci

nun + Ci
n ≥ 0, for i = 0, . . . ,

n − 1

2
;

Ci
n−1un−1 − (n − 1 − i)Ci

nun ≥ 0, for i =
n + 1

2
, . . . , n − 2;

un−1 ≥ 0;

un ≥ 0.

For the above constraints to hold, it suffices that u0 ≥ 0, un+1

2

≥ 0, and un ≥ 0. Consequently,

the solutions of dual Problem (9) coincide with the solutions of the problem:

bTu = pun−1 + (1 − np)un → min subject to un−1 − (n − 1)un + 1 ≥ 0;

C
n+1

2

n−1un−1 −
n − 3

2
C

n+1

2
n un ≥ 0;

un ≥ 0. (17)

It is easy to see that the solution (u∗
n−1, u

∗
n) to the above problem does not depend on p and lies

on the vertex defined by

un−1 − (n − 1)un + 1 = 0 and C
n+1

2

n−1un−1 −
n − 3

2
C

n+1

2
n un = 0.

18



Moreover, pu∗
n−1 + (1 − np)u∗

n = n−1−2np
n+1 at (u∗

n−1, u
∗
n) = (n(n−3)

n+1 , n−1
n+1). Thus, it follows from

the solution of the dual problem that

π0 ≥ 0, π1 = 0, . . . , πn−1

2

= 0, πn+1

2

≥ 0, πn+3

2

= 0, . . . , πn = 0

and

min
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) =
n(2p − 1) + 1

n + 1
.

Problem (8) is solved in a similar manner. Switch to the solution of corresponding dual

Problem (10) and consider the system of equations ATu = a. By solving this system, the

number of variables in Problem (10) is also reduced from n + 1 to 2, since

ui = Ci
n−1un−1 − (n − 1 − i)Ci

nun − Ci
n, for i = 0, . . . ,

n − 1

2
;

ui = Ci
n−1un−1 − (n − 1 − i)Ci

nun, for i =
n + 1

2
, . . . , n − 2.

Therefore, the set of constraints ATu = a, ui ≥ 0, i = 0, 1, . . . , n, reduces to

Ci
n−1un−1 − (n − 1 − i)Ci

nun − Ci
n ≥ 0, for i = 0, . . . ,

n − 1

2
;

Ci
n−1un−1 − (n − 1 − i)Ci

nun ≥ 0, for i =
n + 1

2
, . . . , n − 2;

un−1 ≥ 0;

un ≥ 0.

For the above constraints to hold, it suffices that u0 ≥ 0, un−1

2

≥ 0, and un ≥ 0. Consequently,

19



the solutions of dual Problem (10) coincide with the solutions of the problem:

bTu = pun−1 + (1 − np)un → min subject to un−1 − (n − 1)un − 1 ≥ 0;

C
n−1

2

n−1 un−1 −
n − 1

2
C

n−1

2
n un − C

n−1

2
n ≥ 0;

un ≥ 0. (18)

The solution to the above problem (u∗
n−1, u

∗
n) does depend on p ∈ (0.5, 1). For p < n+1

2n it

corresponds to the vertex defined by

C
n−1

2

n−1 un−1 −
n − 1

2
C

n−1

2
n un − C

n−1

2
n = 0 and un = 0.

In this case, pu∗
n−1 + (1 − np)u∗

n = 2np
n+1 at (u∗

n−1, u
∗
n) = ( 2n

n+1 , 0). Thus, it follows from the

solution of the dual problem that

π0 = 0, . . . , πn−3

2

= 0, πn−1

2

≥ 0, πn+1

2

= 0, . . . , πn−1 = 0, πn ≥ 0

and

max
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) =
2np

n + 1
.

For p > n+1
2n , the solution corresponds to the vertex defined by

un−1 − (n − 1)un − 1 = 0 and C
n−1

2

n−1 un−1 −
n − 1

2
C

n−1

2
n un − C

n−1

2
n = 0.

In this case, pu∗
n−1 + (1 − np)u∗

n = 1 at (u∗
n−1, u

∗
n) = (n, 1). Now it follows from the solution of

20



the dual problem that

π0 ≥ 0, . . . , πn−1

2

≥ 0, πn+1

2

= 0, . . . , πn = 0

and

max
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) = 1.

Finally, for p = n+1
2n the solution of Problem (18) is non-unique; all points lying on the line

C
n−1

2

n−1 un−1 − n−1
2 C

n−1

2
n un −C

n−1

2
n = 0 between the points ( 2n

n+1 , 0) and (n, 1) are the solutions of

Problem (18). In this case,

π0 = 0, . . . , πn−3

2

= 0, πn−1

2

≥ 0 (and therefore πn−1

2

= 1/C
n−1

2
n ), πn+1

2

= 0, . . . , πn = 0

and

max
x2,x3,...,xn

Mn,p(x2, x3, . . . , xn) = 1.

Proof of Corollary 1. Rewriting the system of equations π1 = 0, . . . , πn−1

2

= 0, πn+3

2

= 0, . . . ,

πn = 0 in terms of the variables λ2, λ2 − λ3, . . . , λn−1 − λn, we obtain

πk =

k−1
∑

j=0

(−1)jCj
k−1[λn−k+j − λn−k+j+1] = 0, for 1 ≤ k ≤ n − 2, k 6= n + 1

2
; (19)

πn−1 = p − λ2 +

n−2
∑

j=1

(−1)jCj
n−2[λj+1 − λj+2] = 0; (20)

πn = (1 − np) + (n − 1)λ2 +

n−1
∑

j=2

(−1)jCj
n−1[λj − λj+1] = 0. (21)
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For k = 1, π1 = λn−1 − λn = 0, while for k = 2, π2 = (λn−2 − λn−1) − (λn−1 − λn) = 0.

Together, this implies that λn−2 = λn−1 = λn. Continuing in the same manner, we obtain

λn+1

2

= λn+3

2

= · · · = λn. In view of these equalities, System (19)-(21) can be expressed as:

πk =

k−n+1

2
∑

j=0

(−1)jCj
k−1[λn−k+j − λn−k+j+1] = 0, for

n + 3

2
≤ k ≤ n − 2;

πn−1 = p − λ2 +

n−3

2
∑

j=1

(−1)jCj
n−2[λj+1 − λj+2] = 0;

πn = (1 − np) + (n − 1)λ2 +

n−1

2
∑

j=2

(−1)jCj
n−1[λj − λj+1] = 0.

The above linear system with respect to λ2, λ2 − λ3, . . . , λn−1

2

− λn+1

2

is represented as an aug-

mented matrix:



















































0 . . . . . . 0 1 −C1
n+1

2

0 . . . 0 1 −C1
n+3

2

C2
n+3

2

. . . . . . . . . . . . . . . . . .

0 0 1 −C1
n−4 . . . (−1)

n−7

2 C
n−7

2

n−4

0 1 −C1
n−3 . . . . . . (−1)

n−5

2 C
n−5

2

n−3

−1 −C1
n−2 C2

n−2 . . . . . . (−1)
n−3

2 C
n−3

2

n−2

C1
n−1 C2

n−1 −C3
n−1 . . . . . . (−1)

n−1

2 C
n−1

2

n−1

0

0

. . .

0

0

−p

np − 1



















































.
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Using elementary row operations we obtain:



















































0 . . . . . . 0 0 −C0
n−3

2

C
n−1

2

n−1

0 . . . . . . 0 −C
n−3

2

n−1 C1
n−3

2

C
n−1

2

n−1

. . . . . . . . . . . . . . . . . .

0 0 0 −C4
n−1 . . . (−1)

n−7

2 C3
n−3

2

C
n−1

2

n−1

0 0 −C3
n−1 3C4

n−1 . . . (−1)
n−5

2 C2
n−3

2

C
n−1

2

n−1

0 −C2
n−1 2C3

n−1 −3C4
n−1 . . . (−1)

n−3

2 C1
n−3

2

C
n−1

2

n−1

C1
n−1 C2

n−1 −C3
n−1 C4

n−1 . . . (−1)
n−1

2 C0
n−3

2

C
n−1

2

n−1

p − 1

p − 1

. . .

p − 1

p − 1

p − 1

np − 1



















































.

Summing all rows, we get λ2 = 3p−1
2 . Therefore,

x2 =
λ2 − p2

p(1 − p)
=

2p − 1

2p
.

Proof of Theorem 2. Rewrite Problem (15) in the standard form as:

aTx → max subject to Ax ≤ b, (22)

where a ∈ R
n−1, b ∈ R

n+1 and A ∈ R
n+1 × R

n−1; and in the dual form as:

bTu → min subject to ATu = a, ui ≥ 0, i = 0, 1, . . . , n. (23)
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The matrix A, the vectors a and b are defined as:

AT =











































0 0 0 . . . 0 −1 C1
n−1 −C2

n

0 0 0 . . . −1 C1
n−2 −C2

n−1 C3
n

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 −1 . . . Cn−5
n−3 −Cn−4

n−2 Cn−3
n−1 −Cn−2

n

0 −1 2 . . . −Cn−4
n−3 Cn−3

n−2 −Cn−2
n−1 Cn−1

n

−1 1 −1 . . . 1 −1 1 −1











































.

a = (0, . . . , 0, 1,−C1
n/2, C

2
n/2, . . . , (−1)n/2C

n/2
n/2

)T and b = (0, . . . , 0, p, 1 − np)T .

Consider the system of equations AT u = a. Since the solution of this system is given by

ui = Ci
n−1un−1 − (n − 1 − i)Ci

nun, for i 6= n

2
, i ≤ n − 2;

un
2

= C
n
2

n−1un−1 −
(n

2
− 1

)

C
n
2
n un − 1,

the set of constraints AT u = a, ui ≥ 0, i = 0, 1, . . . , n, reduces to

Ci
n−1un−1 − (n − 1 − i)Ci

nun ≥ 0, for i 6= n

2
, i ≤ n − 2;

C
n
2

n−1un−1 −
(n

2
− 1

)

C
n
2
n un − 1 ≥ 0;

un−1 ≥ 0;

un ≥ 0.

For the above constraints to hold, it suffices that u0 ≥ 0, un
2
≥ 0, and un ≥ 0. Consequently,
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the solutions of dual Problem (23) coincide with the solutions of the problem:

bT u = pun−1 + (1 − np)un → min subject to un−1 − (n − 1)un ≥ 0;

C
n
2

n−1un−1 −
(n

2
− 1

)

C
n
2
n un − 1 ≥ 0;

un ≥ 0. (24)

The solution (u∗
n−1, u

∗
n) to the above problem corresponds to the vertex defined by

C
n
2

n−1un−1 −
(n

2
− 1

)

C
n
2
n un = 1 and un−1 = (n − 1)un,

that is (u∗
n−1, u

∗
n) = ( n−1

C
n
2

n−1

, 1

C
n
2

n−1

), and pu∗
n−1 + (1 − np)u∗

n = 1−p

C
n
2

n−1

.

From the solution of the dual problem it now follows that

π0 ≥ 0, π1 = 0, . . . , πn
2
−1 = 0, πn

2
> 0, πn

2
+1 = 0, . . . , πn = 0.

Rewriting π1 = 0, . . . , πn
2
−1 = 0, πn

2
+1 = 0, . . . , πn = 0 in terms of λ2, λ2 −λ3, . . . , λn−1 −λn, we

obtain

πk =

k−1
∑

j=0

(−1)jCj
k−1[λn−k+j − λn−k+j+1] = 0, for 1 ≤ k ≤ n − 2, k 6= n

2
; (25)

πn−1 = p − λ2 +

n−2
∑

j=1

(−1)jCj
n−2[λj+1 − λj+2] = 0; (26)

πn = 1 − np + (n − 1)λ2 +
n−1
∑

j=2

(−1)jCj
n−1[λj − λj+1] = 0. (27)

For k = 1, π1 = λn−1 − λn = 0, while for k = 2, π2 = (λn−2 − λn−1) − (λn−1 − λn) = 0.

Together, this implies that λn−2 = λn−1 = λn. Continuing in the same manner, we obtain
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λn
2
+1 = · · · = λn. In view of these equalities, System (25)-(27) can be expressed as:

πk =

k−n
2

∑

j=0

(−1)jCj
k−1[λn−k+j − λn−k+j+1] = 0, for

n

2
+ 1 ≤ k ≤ n − 2;

πn−1 = p − λ2 +

n
2
−1

∑

j=1

(−1)jCj
n−2[λj+1 − λj+2] = 0;

πn = 1 − np + (n − 1)λ2 +

n
2

∑

j=2

(−1)jCj
n−1[λj − λj+1] = 0.

For k = n
2 , we have

πn
2

= λn
2
− λn

2
+1 =

1 − p

C
n
2

n−1

.

For k = n
2 + 1, we have

πn
2
+1 = [λn

2
−1 − λn

2
] − C1

n
2

[λn
2
− λn

2
+1] = 0 =⇒ λn

2
−1 − λn

2
=

1 − p

C
n
2

n−1

C1
n
2

.

For k = n
2 + 2, we have

πn
2
+2 = [λn

2
−2 − λn

2
−1] − C1

n
2
+1[λn

2
−1 − λn

2
] + C2

n
2
+1[λn

2
− λn

2
+1] = 0 =⇒

λn
2
−2 − λn

2
−1 =

1 − p

C
n
2

n−1

[

C1
n
2

C1
n
2
+1 − C2

n
2
+1

]

=
1 − p

C
n
2

n−1

C2
n
2
+1 (28)

and so on up to k = n − 2, whence we obtain

λ2 − λ3 =
1 − p

C
n
2

n−1

C
n
2
−2

n−3 . (29)

26



The equation πn−1 = 0 implies

λ2 = p − C1
n−2[λ2 − λ3] + C2

n−2[λ3 − λ4] − . . . + (−1)
n
2
−1C

n
2
−1

n−2 [λn
2
− λn

2
+1]

= p − 1 − p

C
n
2

n−1

[

C
n
2
−2

n−3 C1
n−2 − C

n
2
−3

n−4 C2
n−2 + . . . + (−1)

n
2 C0

n
2
−1C

n
2
−1

n−2

]

= p − 1 − p

C
n
2

n−1

C
n
2
−1

n−2 = p − n(1 − p)

2(n − 1)
.

We can now use (3) to obtain x2 = 1 − n
2p(n−1) .

Finally, note that for 3 ≤ m ≤ n
2 + 1, summing equations (28)-(29) for λ2 − λ3, λ3 −

λ4, . . . , λm−1 − λm yields

λ2 − λm =
1 − p

C
n
2

n−1

[

C
n
2
−2

n−3 + C
n
2
−3

n−4 + . . . + C
n
2
+1−m

n−m

]

=⇒

λm = p − 1 − p

C
n
2

n−1

[

C
n
2
−1

n−2 + C
n
2
−2

n−3 + C
n
2
−3

n−4 + . . . + C
n
2
+1−m

n−m

]

=⇒

π0 = λn = λn
2
+1 = p − 1 − p

C
n
2

n−1

[

C
n
2
−1

n−2 + C
n
2
−2

n−3 + C
n
2
−3

n−4 + . . . + C0
n
2
−1

]

= 2p − 1.

Remark. For 0 < p < 0.5, the solution of the maximum problem is slightly different:

max
x2,x3,...,xn

πn
2
(x2, x3, . . . , xn) =

p

C
n
2

n−1

.

27



B Moments in the competence problem with three jurors

For n = 3 we have the following k = 4 distinct probabilities πk:

π0 = p3 + 3x2p
2(1 − p) + x3p

3

2 (1 − p)
3

2 ;

π1 = p2(1 − p) + x2p(1 − p)(1 − 3p) − x3p
3

2 (1 − p)
3

2 ;

π2 = p(1 − p)2 + x2p(1 − p)(3p − 2) + x3p
3

2 (1 − p)
3

2 ;

π3 = (1 − p)3 + 3x2p(1 − p)2 − x3p
3

2 (1 − p)
3

2 ,

and Condorcet’s probability

M3,p(x2, x3) = π0 + 3π1 = p2(3 − 2p) − 3x2p(1 − p)(2p − 1) − 2x3p
3

2 (1 − p)
3

2 .

In terms of λ2 = P (V1 = 1, V2 = 1) and λ3 = P (V1 = 1, V2 = 1, V3 = 1) the above probabilities

look as follows:

π0 = λ3;

π1 = λ2 − λ3;

π2 = p − 2λ2 + λ3;

π3 = 1 − 3p + 3λ2 − λ3;

M3,p(λ2, λ3) = 3λ2 − 2λ3.

Our aim is to solve the following linear programming problems:

M3,p(λ2, λ3) → min
λ2,λ3

, M3,p(λ2, λ3) → max
λ2,λ3

subject to π0 ≥ 0, π1 ≥ 0, π2 ≥ 0, π3 ≥ 0.
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Consider the minimum problem. The corresponding dual problem has the form:

bTu → min subject to ATu = −a, ui ≥ 0,

where bT = (0, 0, p, 1 − 3p), AT =









0 −1 2 −3

−1 1 −1 1









, −a = (−3, 2)T .

Solving the system of equations ATu = −a:









0 −1 2 −3

−1 1 −1 1

−3

2









∼









0 −1 2 −3

−1 0 1 −2

−3

−1









,

we obtain u0 = u2 − 2u3 + 1 and u1 = 2u2 − 3u3 + 3. Now our dual problem reads:

pu2 + (1 − 3p)u3 → min subject to u2 − 2u3 + 1 ≥ 0, 2u2 − 3u3 + 3 ≥ 0, u2 ≥ 0, u3 ≥ 0.

The solution of this problem (u∗
2, u

∗
3) = (0, 0.5) does not depend on p.

Let us return to the primal problem. From the solution of the dual problem it follows that

min M3,p = −pu∗
2 − (1 − 3p)u∗

3 = 3p−1
2 , and π0 ≥ 0, π1 = 0, π2 ≥ 0, π3 = 0.

Solving the system of linear equations π1 = 0 and π3 = 0, we obtain:

λ∗
2 = λ∗

3 =
3p − 1

2
, or x∗

2 =
λ∗

2 − p2

p(1 − p)
=

2p − 1

2p
, x∗

3 =
λ∗

3 − 3pλ∗
2 + 2p3

p
3

2 (1 − p)
3

2

=
(4p − 1)(1 − p)

1

2

2p
3

2

.

The maximum problem is approached in a similar manner. Take the dual problem:

bTu → min subject to ATu = a, ui ≥ 0.
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Solving the system of equations ATu = a:









0 −1 2 −3

−1 1 −1 1

3

−2









∼









0 −1 2 −3

−1 0 1 −2

3

1









,

we obtain u0 = u2 − 2u3 − 1 and u1 = 2u2 − 3u3 − 3. Now our dual problem reads:

pu2 + (1 − 3p)u3 → min subject to u2 − 2u3 − 1 ≥ 0, 2u2 − 3u3 − 3 ≥ 0, u2 ≥ 0, u3 ≥ 0.

The solution (u∗
2, u

∗
3) of this problem depends on p:

(u∗
2, u

∗
3) =































(1.5, 0), if p < 2
3

(1.5(1 + a), a), if p = 2
3

(3, 1), if p > 2
3

where a is any real number from the interval [0, 1].

Returning to the primal problem, the solution of the dual problem implies that

maxM3,p = pu∗
2 + (1 − 3p)u∗

3 = min{1.5p, 1}, and

π0 = 0, π1 ≥ 0, π2 = 0, π3 ≥ 0 for p <
2

3
;

π0 = 0, π1 =
1

3
, π2 = 0, π3 = 0 for p =

2

3
;

π0 ≥ 0, π1 ≥ 0, π2 = 0, π3 = 0 for p >
2

3
.

Solving the system of linear equations π0 = 0 and π2 = 0 we obtain:

λ∗
2 =

p

2
, λ∗

3 = 0, or x∗
2 = − 2p − 1

2(1 − p)
, x∗

3 =
(4p − 3)p

1

2

2(1 − p)
3

2

,
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while solving the system of linear equations π2 = 0 and π3 = 0 yields

λ∗
2 = 2p − 1, λ∗

3 = 3p − 2, or x∗
2 = −1 − p

p
, x∗

3 = −2(1 − p)
3

2

p
3

2

.

For p = 2
3 we have

λ∗
2 =

1

3
, λ∗

3 = 0, or x∗
2 = −1

2
, x∗

3 = − 1√
2
.

C Moments in the voting power problem with five voters

For n = 4 (total number of voters is n+1) we have the following k = 5 distinct probabilities πk:

π0 = λ4;

π1 = λ3 − λ4;

π2 = λ2 − 2λ3 + λ4;

π3 = p − 3λ2 + 3λ3 − λ4;

π4 = 1 − 4p + 6λ2 − 4λ3 + λ4.

Our aim is to solve the following linear programming problems:

π2(λ2, λ3, λ4) → min
λ2,λ3,λ4

, π2(λ2, λ3, λ4) → max
λ2,λ3,λ4

subject to π0 ≥ 0, π1 ≥ 0, π2 ≥ 0, π3 ≥ 0, π4 ≥ 0.

Consider the minimum problem. The corresponding dual problem has the form:

bTu → min subject to ATu = −a, ui ≥ 0,
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where bT = (0, 0, 0, p, 1 − 4p), AT =

















0 0 −1 3 −6

0 −1 2 −3 4

−1 1 −1 1 −1

















, −a = (−1, 2,−1)T .

Solving the system of equations ATu = −a:

















0 0 −1 3 −6

0 −1 2 −3 4

−1 1 −1 1 −1

−1

2

−1

















∼

















0 0 −1 3 −6

0 −1 0 3 −8

−1 0 0 1 −3

−1

0

0

















,

we obtain u0 = u3 − 3u4, u1 = 3u3 − 8u4 and u2 = 3u3 − 6u4 + 1. Now our dual problem reads:

pu3+(1−4p)u4 → min subject to u3−3u4 ≥ 0, 3u3−8u4 ≥ 0, 3u3−6u4+1 ≥ 0, u3 ≥ 0, u4 ≥ 0.

The solution of this problem is (u∗
3, u

∗
4) = (0, 0).

Let us return to the primal problem. From the solution of the dual problem it follows that

min π2 = −pu∗
3 − (1 − 4p)u∗

4 = 0, and π0 ≥ 0, π1 ≥ 0, π2 = 0, π3 ≥ 0, π4 ≥ 0.

The maximum problem is approached in a similar manner. Take the dual problem:

bTu → min subject to ATu = a, ui ≥ 0.

Solving the system of equations ATu = a:

















0 0 −1 3 −6

0 −1 2 −3 4

−1 1 −1 1 −1

1

−2

1

















∼

















0 0 −1 3 −6

0 −1 0 3 −8

−1 0 0 1 −3

1

0

0

















,
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we obtain u0 = u3 − 3u4, u1 = 3u3 − 8u4 and u2 = 3u3 − 6u4 − 1. Now our dual problem reads:

pu3+(1−4p)u4 → min subject to u3−3u4 ≥ 0, 3u3−8u4 ≥ 0, 3u3−6u4−1 ≥ 0, u3 ≥ 0, u4 ≥ 0.

The solution (u∗
3, u

∗
4) of this problem is (1, 1

3 ).

Returning to the primal problem, the solution of the dual problem implies that

maxπ2 = pu∗
3 + (1 − 4p)u∗

4 = 1−p
3 , and π0 ≥ 0, π1 = 0, π2 > 0, π3 = 0, π4 = 0.

Solving the system of linear equations π1 = 0, π3 = 0 and π4 = 0 we obtain:

λ∗
2 =

5p − 2

3
, λ∗

3 = λ∗
4 = 2p − 1, and π0 = 2p − 1.

From this we obtain

x∗
2 =

λ∗
2 − p2

p(1 − p)
= 1 − 2

3p
, x∗

3 =
λ∗

3 − 3pλ∗
2 + 2p3

p3/2(1 − p)3/2
=

(2p − 1)(1 − p)1/2

p3/2
=

(

2 − 1

p

)(

1

p
− 1

)1/2

,

x∗
4 =

λ∗
4 − 4pλ∗

3 + 6p2λ∗
2 − 3p4

p2(1 − p)2
=

(3p − 1)(1 − p)

p2
=

(

3 − 1

p

)(

1

p
− 1

)

.
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D *** Supplementary material for referee use only ***

The minimum of voting power. A theorem analogous to Theorem 2 can also be proven for the

minimum. Written in the standard form Problem (14) reads

aTx → min subject to Ax ≤ b, (30)

where a ∈ R
n−1, b ∈ R

n+1 and A ∈ R
n+1 × R

n−1; and in dual form as:

bTu → min subject to ATu = −a, ui ≥ 0, i = 0, 1, . . . , n. (31)

Here a, b and A are defined as in Theorem 2.

Consider the system of equations AT u = −a from dual Problem (31). Using

ui = Ci
n−1un−1 − (n − 1 − i)Ci

nun, for i 6= n

2
, i ≤ n − 2;

un
2

= C
n
2

n−1un−1 −
(n

2
− 1

)

C
n
2
n un + 1,

we can rewrite the set of constraints ATu = −a, ui ≥ 0, i = 0, 1, . . . , n, as

Ci
n−1un−1 − (n − 1 − i)Ci

nun ≥ 0, for i 6= n

2
, i ≤ n − 2;

C
n
2

n−1un−1 −
(n

2
− 1

)

C
n
2
n un + 1 ≥ 0;

un−1 ≥ 0;

un ≥ 0.

For the above constraints to hold, it suffices that u0 ≥ 0, un ≥ 0. Consequently, the solutions
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of dual Problem (31) coincide with the solutions of the problem:

bTu = pun−1 + (1 − np)un → min subject to un−1 − (n − 1)un ≥ 0, un ≥ 0. (32)

It is easy to show that the solution (u∗
n−1, u

∗
n) to the above problem is (0, 0). Moreover, pu∗

n−1 +

(1 − np)u∗
n = 0 at (u∗

n−1, u
∗
n) = (0, 0). It follows from the solution of the dual problem that

π0 ≥ 0, π1 ≥ 0, . . . , πn
2
−1 ≥ 0, πn

2
= 0, πn

2
+1 ≥ 0, . . . , πn ≥ 0

and

min
x2,x3,...,xn

Pn,p(x2, x3, . . . , xn) = min
x2,x3,...,xn

πn
2
(x2, x3, . . . , xn) = 0.

This solution is also valid for 0 < p < 0.5.
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