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Abstract
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1 Introduction

Despite their respectable age, the power indices proposed by Penrose (1946) and Banzhaf (1965),

or Shapley and Shubik (1954), henceforth Bz and SSI, remain a popular choice in empirical work.

Both indices measure the distribution of a priori voting power that follows from the constitution

and rules of a voting body alone. However, voting situations, both hypothetical and real, exist

in which the two indices yield markedly different results. Which index to use therefore becomes

a question of practical importance in the empirical work.

To answer this question, Straffin (1977) derives probabilistic models consistent with each of

the two indices. He shows that, depending on the distribution of the voting poll, the expected

individual effect of each member of a voting body on the outcome of voting numerically coincides

with either the SSI or Bz measure. Straffin’s prescription for empirical work is as follows: “If we

believe that voters in a certain body have such common standards, the Shapley-Shubik index

might be most appropriate; if we believe voters behave independently, the Banzhaf index is the

instrument of choice” (Straffin 1994, p. 1137). The question explored in this paper is: What is

the error of an empirical researcher who, following Straffin’s prescription, applies the Bz measure

to a voting body in which Straffin’s Independence Assumption is not met?

To answer this question, I compute the bias of the Bz absolute measure of power in reflecting

a voter’s probability of being decisive when the votes are neither equiprobable nor independent. I

use a numerical scheme to construct a joint probability distribution on the set of voting outcomes

(coalitions) for given probabilities and correlation coefficients, and compare the Bz measure for

this distribution to its equivalent in the case of equiprobable and independent votes.1 Section 2

argues that the pairwise correlation as a model of stochastic dependence is sufficiently general for

1The numerical scheme was introduced in Kaniovski and Pflug (2007) for modeling financial default risk. In
this paper I provide an analytical solution to a slightly less general version of the scheme.
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most empirical applications including voting by blocs. Section 3 discusses a numerical scheme for

computing the Bz swing probability when the votes are not equally probable and correlated, and

shows how to estimate the probabilities and correlation coefficients from ballot data. Section

4 presents an analytical derivation of the exact magnitude of the bias due to the common

probability of a YES vote deviating from one half and due to common correlation in unweighted

simple-majority games. Section 5 derives a modified Penrose’s square-root rule in the case of

correlated votes. The last section concludes.

2 Straffin’s probabilistic voting models

Let pi be the probability that member i votes YES. Straffin (1977) introduces two probabilistic

assumptions: “Independence Assumption: The pi’s are selected independently from the uniform

distribution on [0, 1]. or: Homogeneity Assumption: A number p is selected from the uniform

distribution on [0, 1], and pi = p for all i” (p. 112). He then proceeds to prove two well-

known characterization theorems. Theorem 1 states that under the Independence Assumption

the probability of the i-th member’s vote being decisive, or the i-th expected individual effect

on the outcome of voting, coincides with the Banzhaf measure of voting power for i

βi =
ηi

2n−1
. (1)

Here ηi is the number of coalitions in which i is decisive, and n the total number of members.

The Banzhaf index is obtained by normalizing βi’s to add up to unity, which unfortunately

destroys its probabilistic meaning. Theorem 2 makes a similar statement for the Homogeneity

Assumption and the SSI.

The crucial assumption in both models is that each member votes independently. This is
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evident from the proofs, both of which rely on multilinear extensions of a game introduced by

Owen (1972). A multilinear extension of a game played by N = {1, 2, . . . , n} members is

f(x1, . . . , xn) =
∑

S⊆N

∏

j∈S

xj

∏

j∈N\S
(1 − xj)w(S), where 0 ≤ xj ≤ 1 for all j. (2)

The characteristic function, w(S), takes the value of 1 if S is a winning coalition and the value

of 0 if it is not. It is completely defined by the voting rule (quota) and the weights assigned to

each member. The increment in the multilinear extension incurred by the addition of the i-th

member’s vote to the voting poll gives the effect of the i-th member on the outcome

∆if(x1, . . . , xn) =
∑

S⊆Wi

∏

j∈S\{i}
xj

∏

j∈N\S
(1 − xj), (3)

where Wi is the set of winning coalitions in which member i is decisive (critical).

Let xi be the probability that member i votes YES. The assumption of independent votes

endows an increment in the multilinear extension with a unique probabilistic interpretation.

Then and only then does ∆if(x1, . . . , xn) become the probability that the i-th vote is decisive.

Taking this fact as a point of departure, Straffin shows that the Independence Assumption

leads to the Bz measure, whereas the Homogeneity Assumption leads to the SSI. In the general

case of possibly dependent votes this probability takes the form Pi =
∑

S⊆Wi

πS, where πS is the

probability of the occurrence of coalition S. It is given by a joint probability distribution on

the set of all coalitions. While summation remains valid due to the coalitions being mutually

exclusive, the products in (2) and (3) only apply to independent votes.

It is important to note that while assigning different weights to different members of a vot-

ing body, or changing the quota, may change the characteristic function of the game, stochastic
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properties of the votes have no effect on the characteristic function. Coalitions that have been

winning under equally probable and independent votes remain such when the votes lose either

property – what changes are the probabilities of their occurrence. Straffin’s Independence As-

sumption implies that all voting outcomes have an equal probability of occurrence. Computing

the probabilities if one departs from this assumption is the focus of the present paper.

For all empirical purposes Straffin’s Independence Assumption is equivalent to the “equiprob-

ability of each member voting either way; and independence between members” (Felsenthal and

Machover 1998, p. 37). Note that “equiprobability either way” means two things: First, all

members vote YES with equal probability and, second, this probability equals one half. The

Independence Assumption thus leads to a binomial distribution with one half as the probability

of success. The consequences of relaxing the equiprobability assumption have been previously

studied in Good and Mayer (1975), Chamberlain and Rothschild (1981) and Grofman (1981).

These studies show that the probability of being decisive changes considerably when the votes

are not equiprobable.

As argued in Felsenthal and Machover (1998), Straffin’s Independence Assumption can be

defended by the Principle of Insufficient Reason. As an assumption it is rational in the absence

of prior knowledge about the future issues on the ballot and how divided over these issues the

voting body will be. It suits the intended purpose of measuring the a priori distribution of

voting power, the distribution that follows from the constitution and rules of the voting body,

provided that all coalitions are equiprobable.

In Straffin’s Homogeneity Assumption, equal probability of acceptance may be interpreted

as reflecting the fact that members of a voting body have common standards when evaluating a

proposal on ballot. The Homogeneity Assumption thus seems to abandon the a priori approach

in favor of a more realistic model. The implied individual voting behavior is nevertheless very
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rigid. In the words of Felsenthal and Machover: “the model . . . is appropriate if we assume

that all the voters are identical clones, with the same interests and identical [probabilistic]

propensities, formalized by the common random variable P, which in each division produces the

same probability p for all of them” (p. 201). To an external observer who does not know the

true value of a common p, decisions by voting bodies with p close to zero or one would appear

highly correlated, as near unanimous outcomes would be frequent in either case.

One possibility is to combine the two models (Widgrén 1995). As Kirman and Widgrén

(1995) define it: “the voters are said to be ‘partially homogeneous’ when they can be partitioned

into groups within which voters are homogeneous, whereas the groups vote independently of

each other” (p. 430). However, partial homogeneity suffers from all the limitations of both

probabilistic models. In the next section I argue that working directly with correlated votes is

a more satisfactory way of modeling truly heterogeneous voting bodies.

2.1 Correlated votes

The crucial assumption is that each member votes independently of all other members is unten-

able in most voting situations. First, as noted by many authors, including Straffin, members of

a voting body may follow common standards when evaluating a proposal on ballot, to the effect

that the votes in favor any one such proposal will correlate positively. One example of a com-

mon standard is common information. The more the members communicate with each other,

the less their votes are likely to be independent. Second, voting may be strategic. Strategic

voting is contingent on how other members are expected to vote and is thus, by definition, not

independent. Third, and closely related, there may be tacit collusion between certain members

of a voting body, so that an outsider to the group will in effect be facing a voting bloc. The

existence and behavior of secret or tacit voting blocs may appear probabilistic to an outsider.
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Fourth, members may have similar or different preferences, which could lead to correlated voting

patterns. All of the above factors suggest that dependent voting must be the norm rather than

the exception, and that correlations may either be positive, reflecting a degree of commonality

or conformism, or negative, reflecting a degree of rivalry. It is therefore only natural to expect

a member’s a priori power to differ from her actual ability to change the outcome of the voting

at any point after the constitutional stage. This expectation is all the more applicable when one

considers that the former does not change as long as the rules stay the same, while the latter

may change from one issue to another. A realistic model of a voting body should therefore be

able to accommodate varying probabilities and correlations between votes.

Correlation between votes provides a general way of taking voters’ preferences into account,

and the need to do so has been repeatedly stressed in the literature.2 It is common to represent

voter’s preferences as points in Euclidean space.3 Whereas spatial representations typically are

deterministic, correlations suggest only a probabilistic tendency of a member toward certain

positions and correlation coefficients can easily be estimated from ballot data.

As a simple model of probabilistic dependence, I shall assume that the votes of n−1 (n ≥ 3)

members of a voting body are correlated, whereas the i-th member votes independently of all

others. Member i is independent because she has already made her choice. Her vote is assumed

to be deterministic. I then compute the i-th swing probability and the bias resulting from the

application of the Bz measure to i. Alternatively, one could compute the conditional probability

of i being decisive, conditioned on her voting YES. Since the two probabilities differ by the

factor 1/pi, where pi is the probability of i voting YES, I will compute the former probability.

2See Napel and Widgrén (2004) and the critique in Braham and Holler (2005a), as well as the reply in Napel
and Widgrén (2005) and the rejoinder in Braham and Holler (2005b). For a critique of preference-free measures
of voting power in the context of the European Union, see Garrett and Tsebelis (2001).

3As in Steunenberg, Schmidtchen and Koboldt (1999), Napel and Widgrén (2004), the veto player theory of
Tsebelis (1995), and in a general theory of voting by Merrill III and Grofman (1999), among others.
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The assumption of pairwise correlation implies the existence of a degree of commonality

(positive correlation) or a degree of rivalry (negative correlation) between n − 1 members of

a voting body, including their mutual independence as a special case.4 Note that pairwise

correlations cannot capture correlations between an individual member and a bloc of members,

but this entails no loss of generality if voting blocs are deterministic, in the sense that each

insider votes in unison with all other insiders with a probability of one. In this case, pairwise

correlation between an outsider and a bloc is equivalent to pairwise correlation between the

outsider and a hypothetical member holding the total weight of the bloc in votes. The voting

blocs typically discussed in the literature are deterministic (e.g., Barbera and Jackson 2006,

Leech and Leech 2006).

However, the above is not the only way to model probabilistic dependence between votes.

Several alternatives have been proposed in the literature, including the urn model by Berg (1985)

and the branching process model by Gelman, Katz and Tuerlinckx (2002). The urn approach has

been most extensively developed in the generalizations of Condorcet’s Jury Theorem in Boland

(1989) and Berg (1993). The approach proposed in this paper has the advantage of extending

the probabilistic setting of Straffin’s theorem to correlated votes without making explicit or

implicit assumptions about the dynamics of a voting procedure or the nature of probabilistic

dependence. In contrast, by virtue of an urn process the voting in Berg’s model is sequential.

This follows by construction of an urn scheme, in which colored balls are drawn one at a time

and are then replaced by one or several balls of a given color. A model based on an urn process

implicitly assumes that the probability of being correct changes every time a vote is cast. Such

a model would imply state-dependence in the process of reaching a decision, with the possibility

of a lock-in on an alternative (Page 2006). Gelman et al.’s (2002) approach is based on the Ising

4With some abuse of terminology, as zero correlation does not imply stochastic independence in general.
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model from statistical mechanics. In this model correlations are implicitly defined by a spatial

proximity parameter, but the votes are equiprobable.

I show that positive correlation between some members of a voting body is likely to reduce the

voting power of an independent member, while negative correlation due to contrarian strategies

applied by some members is likely to increase her power. By increasing the probability of ties

or near-ties, negative correlation increases probabilities of those voting outcomes in which the

independent member is decisive, while positive correlation decreases these probabilities.

3 A numerical scheme for computing the swing probability

Suppose that member i votes YES with probability pi ∈ [0, 1], member j votes YES with

probability pj ∈ [0, 1], and the two YES votes are correlated with a coefficient of correlation

ci,j ∈ [−1, 1]. Define the probabilities of the four possible voting outcomes as: π1 = P{vi =

1, vj = 1}, π2 = P{vi = 1, vj = 0}, π3 = P{vi = 0, vj = 1}, π4 = P{vi = 0, vj = 0}, where 1

and 0 indicate the YES and NO vote. We have: π1 + π2 = pi, π1 + π3 = pj and π1 + π2 + π3 +

π4 = 1. As the covariance cov[vi, vj ] between the two Bernoulli random variables vi and vj is

E[vivj] − E[vi]E[vj ] = π1 − pipj, the coefficient of correlation ci,j = cov[vi, vj ]/
√

var[vi]var[vj ]

must satisfy π1 = pipj +ci,j

√

pi(1 − pi)pj(1 − pj). Two uncorrelated Bernoulli random variables

are independent. Plugging pi, pj and ci,j into the four equations recovers the distribution

(π1, π2, π3, π4), provided π1 ≥ 0. As we shall see below, an analogous system of equations in the

general case of more than three members may not have a unique solution. Before proceeding to

the general case, it is necessary to introduce notation.

With m members, a voting outcome can be represented by binary vector v = (v1, v2, . . . , vm),

whose i-th coordinate vi = 1 if member i votes YES, and vi = 0 otherwise. Define the following
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sets: V the set of all voting outcomes; V(i) the set of voting outcomes in which member i

votes YES, that is the set of all binary vectors v such that vi = 1; V(i, j) = V(i) ∩ V(j) the

set of voting outcomes in which members i and j both vote YES, that is the set of all binary

vectors v such that vi = vj = 1. Sets V, V(i) and V(i, j) respectively contain 2m, 2m−1 and

2m−2 elements. For example, for m = 3 there will be eight voting outcomes A:(1,1,1), B:(1,1,0),

C:(1,0,1), D:(1,0,0), E:(0,1,1), F:(0,1,0), G:(0,0,1), and H:(0,0,0). The set V contains all eight

vectors. The set V(2) contains vectors A, B, E, and F, as only they have 1 in the second

coordinate. The set V(2, 3) contains vectors A and E, as only they have 1 in the second and

third coordinates.

For m ≥ 3, we have

πv ∈ [0, 1] ∀v ∈ V; (4)

∑

v∈V

πv = 1; (5)

∑

v∈V(i)

πv = pi for 1, 2, . . . ,m; (6)

∑

v∈V(i,j)

πv = pipj + ci,j

√

pi(1 − pi)pj(1 − pj) for 1 ≤ i < j ≤ m, (7)

provided the correlation matrix constructed from ci,j’s is positive semi-definite.

Given m probabilities and
(

m
2

)

coefficients of correlation, the above system comprises 1+m+

(

m
2

)

equations with 2m unknowns and hence may not have a unique solution for m ≥ 3. For a

particular solution choose the one which is closest in the sense of least squares to the probability

distribution in the case of independent votes. This solution can be obtained by solving the

10



following quadratic optimization problem

min
πv

1

2

∑

v

[

πv −
m
∏

i=1

pvi

i (1 − pi)
(1−vi)

]2

for v ∈ V, (8)

subject to constraints (4)-(7).

The strict convexity of the objective function implies that a solution, if one exists, is unique.

Any probability vector of length 2m can be used as a criterion for computing the smallest sum

of squared deviations. This vector is chosen because the resulting optimization problem can be

used to compute the bias in the vicinity of the probability vector corresponding to the Bz ideal

case of equiprobable and independent votes, as well as in the vicinity of the probability vector

corresponding to the more general case of independent but not equiprobable votes.

The formulation of the numerical scheme is essentially independent of the assignment of

probabilities in the sense that defining, for example, pi as the probability of i voting YES and

pj as the probability of j voting NO, leads to a similar system of equations. This is clear with

respect to constraints involving the probabilities, while the following simple Lemma shows it

also to be true with respect to constraints involving the correlation coefficients.

Lemma 1. Let vi and vj be two Bernoulli random variables with Evi = pi and Evj = pj .

Further, let

P{vi = 1, vj = 1} = pipj + ci,j

√

pi(1 − pi)pj(1 − pj); (9)

P{vi = 0, vj = 1} = (1 − pi)pj + c̄i,j

√

pi(1 − pi)pj(1 − pj); (10)

P{vi = 1, vj = 0} = pi(1 − pj) + ĉi,j

√

pi(1 − pi)pj(1 − pj); (11)

P{vi = 0, vj = 0} = (1 − pi)(1 − pj) + c̃i,j

√

pi(1 − pi)pj(1 − pj). (12)
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Then, ci,j = −c̄i,j, ci,j = −ĉi,j, ci,j = c̃i,j .

Proof. To prove the first equality, substitute (9) and (10) into P{vi = 1, vj = 1} + P{vi =

0, vj = 1} = pj. The second equality is obtained by substituting (9) and (11) into P{vi =

1, vj = 1} + P{vi = 1, vj = 0} = pi. Finally, the third equality is obtained by substituting (9)

and (12) into P{vi = 1, vj = 1} − P{vi = 0, vj = 0} = pi + pj − 1.

Consequently, each of the four alternative assignments of probabilities leads to systems of

equations identical except, perhaps, for the sign of the correlation coefficient. Section 3.1 uses

this fact to obtain unique empirical estimates of the probabilities and correlation coefficients.

A numerical solution of the general problem is feasible but can be computationally intensive

for a large m. In Appendix A, I analytically solve a slightly less general problem, in which all

the probabilities are identical but the correlation coefficients may vary.

Proposition 1. Let pi = p ∈ [0, 1] for all i = 1, 2, . . . ,m be the probability of i-th member voting

YES and ci,j ∈ [−1, 1], 1 ≤ i < j ≤ m, the correlation coefficient between any two such votes.

Setting q = 1 − p, the probability of occurrence of a voting outcome is given by

π∗
v

= p
∑m

i=1 viqm−
∑m

i=1 vi + 22−mpq

m−1
∑

i=1

m
∑

j=i+1

ci,j − 23−mpq

m
∑

i=1

vi





i−1
∑

j=1

cj,i +

m
∑

j=i+1

ci,j



 +

+ 24−mpq
m−1
∑

i=1

m
∑

j=i+1

ci,jvivj , (13)

provided π∗
v
≥ 0.

When ci,j = c,
m−1
∑

i=1

m
∑

j=i+1
c = cm(m−1)

2 and
i−1
∑

j=1
c +

m
∑

j=i+1
c = c(m − 1), so that

π∗
v = p

∑m
i=1 viqm−

∑m
i=1 vi + 22−mpqc

(

m(m − 1)

2
− 2(m − 1)

m
∑

i=1

vi + 4

m−1
∑

i=1

m
∑

j=i+1

vivj

)

. (14)
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The above optimization problem is completely general in that it admits varying probabilities and

correlation coefficients. If distributions that satisfy the probabilities and correlation coefficients

exist, it will find one such distribution. If all p’s are equal, the analytical solution (13) will yield

the same distribution, unless one or more of the voting outcomes occurs with probability zero,

or if the complementary slackness condition (4) is binding. The requirement π∗
v ≥ 0 puts an

upper bound on ci,j ’s for given m and p. This restriction applies to the analytical solution only,

as in numerical optimization the full set of constraints (4)-(7) is imposed.

3.1 Estimating the probabilities and correlation coefficients

The proposed methodology allows calibrating an accurate model of the voting body given one’s

prior beliefs about the preferences of the members and the degree of commonality or rivalry

among them. Expressed in terms of the probabilities and correlation coefficients, these beliefs

can be used to forecast the probabilities of different voting outcomes. Alternatively, one can

estimate probabilities and correlation coefficients based on ballot data.

Since pi =
∑

v∈V(i)

πv, its estimate p̂i equals the frequency of YES votes in the total number

of votes cast by i. For two Bernoulli random variables vi and vj with Evi = pi and Evj = pj

P{vi = 1, vj = 1} = pipj + ci,j

√

pi(1 − pi)pj(1 − pj); (15)

P{vi = 1, vj = 0} = pi(1 − pj) − ci,j

√

pi(1 − pi)pj(1 − pj); (16)

P{vi = 0, vj = 1} = (1 − pi)pj − ci,j

√

pi(1 − pi)pj(1 − pj); (17)

P{vi = 0, vj = 0} = (1 − pi)(1 − pj) + ci,j

√

pi(1 − pi)pj(1 − pj). (18)

Substituting the frequencies of the four arrangements of votes f i,j
1 , f i,j

2 , f i,j
3 , f i,j

4 for the proba-

bilities on the left-hand side, and the estimates p̂i, p̂j in the right-hand side equations yields a
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system of four equation with one unknown ci,j . An estimate of ci,j can be obtained by minimizing

the goodness of fit statistic

min
ci,j

GF (ci,j) =

4
∑

k=1

(f i,j
k − hk(ci,j))

2

f i,j
k

, (19)

where

h1(ci,j) = p̂ip̂j + ci,j

√

p̂i(1 − p̂i)p̂j(1 − p̂j); (20)

h2(ci,j) = p̂i(1 − p̂j) − ci,j

√

p̂i(1 − p̂i)p̂j(1 − p̂j); (21)

h3(ci,j) = (1 − p̂i)p̂j − ci,j

√

p̂i(1 − p̂i)p̂j(1 − p̂j); (22)

h4(ci,j) = (1 − p̂i)(1 − p̂j) + ci,j

√

p̂i(1 − p̂i)p̂j(1 − p̂j). (23)

The value that minimizes GF (ci,j) is Neyman and Pearson’s minimum χ2 estimator (Hall 2005,

ch. 1.2). In a voting body of m members there will be
(

m
2

)

distinct pairs of members and hence

that many minimization problems to solve. The independence assumption can be tested using

Fisher’s exact test based on a hypogeometric distribution (Everitt 1992, chs. 2.4 and 3.6.1).

3.2 Examples

With n ≥ 3 members, the aim is to compute the i-th member swing probability and the bias

resulting from the application of the Bz measure to i, assuming that i votes independently but

the remaining m = n − 1 votes correlate. The generalized Bz measure, i.e. the probability of

casting a decisive vote, for member i can be written as Bzi(n,p, c), where p is the vector of

m probabilities and c the vector of
(

m
2

)

correlation coefficients. If pi = p and ci,j = c for all i

and j, we would write Bzi(n, p, c). This case will be studied analytically. In the above notation,
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Bzi(n, 0.5, 0) = βi is the original Bz measure. The following three examples illustrate the effect

of the probabilities and correlation coefficients on the Bz measure, assuming the independent

member votes YES.

Example 1 (Table 1): Consider an unweighted simple-majority game with four members,

or {3; 1, 1, 1, 1}. Let the first member be independent. If all other members also vote indepen-

dently, each coalition among the remaining three members would occur with the probability

0.53 = 0.125. The first member is decisive in 3 of the 8 coalitions; her Bz measure is equal to

3 · 0.53 = 0.375 (Case A).

Let any two of the remaining three votes correlate with c = 0.2 (Case B). Positive correlation

makes broad coalitions more probable, tight coalitions less probable. The opposite is true of

negative correlation (Case C). Increasing p shifts the probabilities toward coalitions with a high

percentage of 1’s (Case D). Introducing positive correlation negates some of this shift due to

an increase in the probability of occurrence of all broad coalitions, including those with a high

percentage of 0’s (Case E).

Case D suggests that a departure from equiprobability increases the voting power of the

independent member, but in the next section I show that the opposite can also occur. Cases

B and C show that positive correlation between members of a voting body will reduce the

voting power of the independent member; negative correlation will have the opposite effect.

By increasing the probability of ties or near-ties, negative correlation increases probabilities of

those voting outcomes in which the independent member is decisive, while positive correlation

decreases these probabilities.

The above examples show that the distribution of voting power in an unweighted simple

majority game ceases to be trivial when the votes are neither equiprobable nor independent,

and that even small departures from either assumption may generate a substantial discrepancy

15



between the Bz measure and the probability of casting a decisive vote. Application of the Bz

measure to these voting situations will result in substantial biases. The absolute and the relative

biases for i are computed as:

Bzi(n, 0.5, 0) − Bzi(n, p, c) and
Bzi(n, 0.5, 0) − Bzi(n, p, c)

Bzi(n, 0.5, 0)
. (24)

The following example of a weighted voting game shows the versatility of the numerical scheme.

TABLE 1 ABOUT HERE

Example 2 (Table 2): Consider the weighted game {6; 4, 2, 2, 1}. When all members vote

independently, the Bz vector reads (0.75,0.25,0.25,0.00).

Let c1,2 = c1,3 = c1,4 = 0.1, c2,3 = 0.2, c2,4 = c3,4 = 0.5. This is a situation in which small

members are more likely to cooperate with each other than with the large member. Now the

Bz vector reads (0.700,0.225,0.225,0.000), allocating respectively 6.7 and 10 percent less power

to the large member and medium members (whose powers are equal). The smallest member is

a dummy regardless of the stochastic properties of the votes, as the characteristic function is

independent of them.

TABLE 2 ABOUT HERE

Example 3 (Figure 1): The final example illustrates the effect of a change in p and c

on the Bz measure in an unweighted simple-majority game with n = 4 and n = 5. Figure 1

shows that the bias incurred by p deviating from 0.5 is larger than that incurred by c deviating

from 0, which appears to vary linearly with the magnitude of the correlation coefficient. This is

established rigorously in the next section.

FIGURE 1 ABOUT HERE
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4 Assessing the bias of the Bz measure

The examples of the previous section show the Bz measure to be biased when the votes are

neither equiprobable nor independent. This section presents a proposition and a corollary on

the magnitude of the probability and correlation biases in unweighted simple-majority games.

The model studied will be that of a homogeneous voting body in which each vote has an equal

probability of being affirmative, and each pair of such votes is correlated with the same coefficient

of correlation.

In an unweighted simple majority voting game, the Bz swing probability for the independent

member i, assuming i votes YES, is given by

Bzi(n, p, c) =
∑

v s.t.
m
∑

i=1
vi=

m+1
2

πv for v ∈ V when n is even, m = n − 1, (25)

or

Bzi(n, p, c) =
∑

v s.t.
m
∑

i=1
vi=

m
2

πv for v ∈ V when n is odd, m = n − 1. (26)

Proposition 2. In a simple-majority game with n members, in which: (1) the probabilities of

a YES vote equal p for all members, q = 1 − p, and (2) the correlation coefficients equal c for

any pair of members, the Banzhaf absolute measure of voting power for an independent member

i is given by

Bzi(n, p, c) =

(

m
m+1

2

)

[

p
m+1

2 q
m−1

2 − 21−mpqc(m − 1)
]

when n is even, m = n − 1; (27)

Bzi(n, p, c) =

(

m
m
2

)

[

(pq)
m
2 − 21−mpqcm

]

when n is odd, m = n − 1. (28)

Proof. The expression for Bzi(n, p, c) is obtained by adding the probabilities of the relevant
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voting outcomes given by (14), which have equal probabilities of occurrence. When n is even (m

is odd), there are
(

m
m+1

2

)

voting outcomes in which i is decisive by voting YES, and
m
∑

i=1
vi = (m−1)

2 ,

m−1
∑

i=1

m
∑

j=i+1
vivj =

(m−1
2
2

)

. Similarly, when n is odd (m is even), there are
(

m
m
2

)

voting outcomes in

which i is decisive by voting YES, and
m
∑

i=1
vi = m

2 ,
m−1
∑

i=1

m
∑

j=i+1
vivj =

(m
2
2

)

.

Proposition 2 can be adapted to fit any weighted supermajority game by replacing the above

combinatorial analysis with a listing of coalitions in which the independent member is decisive,

such as the one in Table 2. The number of such coalitions may differ from
(

m
m+1

2

)

and
(

m
m
2

)

. The

following corollary furnishes the relative bias due to p deviating from 0.5 when c = 0, and due

to c deviating from 0 when p = 0.5.

Corollary 1. In a simple-majority game with n members, in which: (1) the probabilities of a

YES vote equal p for all members, and (2) the votes are uncorrelated, the relative bias equals

Bzi(n, 0.5, 0) − Bzi(n, p, 0)

Bzi(n, 0.5, 0)
= 1 − 2mp

m+1
2 q

m−1
2 when n is even, m = n − 1; (29)

Bzi(n, 0.5, 0) − Bzi(n, p, 0)

Bzi(n, 0.5, 0)
= 1 − 2mp

m
2 q

m
2 when n is even, m = n − 1. (30)

In a simple-majority game with n members, in which: (1) the probabilities of a YES vote equal

p = 0.5 for all members, and (2) the correlation coefficients equal c for any pair of members,

the relative bias equals

Bzi(n, 0.5, 0) − Bzi(n, 0.5, c)

Bzi(n, 0.5, 0)
=

c(m − 1)

2
when n is even, m = n − 1; (31)

Bzi(n, 0.5, 0) − Bzi(n, 0.5, c)

Bzi(n, 0.5, 0)
= c

m

2
when n is odd, m = n − 1. (32)

The sign of the probability bias depends on p and the parity of n. When n is even (m is odd),
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the bias is polynomial. It can have either sign, as 2mp
m+1

2 q
m−1

2 can be smaller or larger than

1 for p 6= 0.5. For p ∈ [0, 1] and m = 2k, k = 1, 2, . . . , the function f(p) = 2mp
m+1

2 (1 − p)
m−1

2

attains a unique maximum at p∗ = m+1
2m

. Since p∗ > 0.5, and p∗ → 0.5, f(p∗) → 1 from above

as m → ∞, the bias is positive for all p < 0.5 and negative for some p > 0.5.

The member is the more powerful, the more frequently her vote is decisive. But this will

depend on circumstances created by others casting their votes so that she has opportunities

to be decisive. The asymmetry of the probability bias about the point p = 0.5 for an even n

owes to the criterion (25), in which Bzi(n, p, 0) is the highest when voting outcomes satisfying

m
∑

i=1
vi = m+1

2 are highly probable, or when YES votes are slightly more probable than NO votes.

When n is odd (m is even), the inequality 22p(1− p) ≤ 1 for p ∈ [0, 1] implies 2mp
m
2 q

m
2 < 1

for all p 6= 0.5. The probability bias is polynomial and positive.

In any case, positive correlation will bias the Bz measure upwards, negative correlation will

have the opposite effect. The absolute and relative correlation biases increase linearly in c. The

relative bias increases linearly in m.

5 A modified Penrose’s square-root rule

Let N be the number of constituencies, each having ni citizens. Let i and di denote a citizen

and the delegate of the i-th constituency. The square-root rule (SRR) gives an approximate

answer to the following question: How should voting power be distributed in a council of elected

delegates so that each citizen – regardless of the size of her constituency – has an equal a priori

power in the sense of Banzhaf? The following assumptions lead to a two-stage binomial model:

(i) each citizen has one vote, (ii) all citizens’ and all delegates’ votes are equiprobable and

independent, and (iii) the universal voting rule is simple majority. The probability of a citizen
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being decisive in bringing about her preferred outcome in the council equals the probability

that the delegate is decisive in bringing about this outcome, multiplied by the probability that

the citizen is decisive in electing the delegate. Formally, β̂i = βdi
(N)βi(ni), where βi(ni) is the

voting power of the citizen i in her constituency, βdi
(N) is the voting power of the delegate di

in the council, and β̂i is the indirect voting power of the citizen i.

To obtain the ratio of delegate powers that will equilibrate the citizens’ indirect powers,

set β̂i/β̂j = 1 and apply Stirling’s approximation to βi(ni) and βj(nj). This leads to the well-

known result that the citizens’ indirect powers are approximately equal if the powers of the

delegates in the council are proportional to the square root of the size of their constituencies,

or βdi
(N)/βdj

(N) ≈
√

ni/nj =
√

h. The last step assumes, without any loss of generality, that

the constituencies differ in size by the fraction h > 0 so that ni = hnj.

Suppose that in each constituency i the votes are equiprobable but correlated, with the coeffi-

cient of correlation ci. A high positive ci implies a more homogeneous constituency. The larger

and the more homogeneous a constituency is, the less power do its citizens have. In contrast,

differences of opinion with respect to the candidates on the ballot should lead to closer outcomes,

thus increasing the efficacy of a vote.

Proposition 2 can be used to obtain the ratio of Bz powers for citizens i and j of two different

constituencies. Setting pi = pj = 0.5, ni = hnj and dropping the subscript on ni leads to

Bzi([hn], 0.5, ci)

Bzj(n, 0.5, cj)
=

2−1−[hn]
([hn]

[hn]
2

)

(2 − ci[hn])

2−1−n
(

n
n
2

)

(2 − cjn)
. (33)
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where [x] denotes the integer part of x.5 By Stirling’s approximation

βdi
(N)

βdj
(N)

≈
√

h
2 − cjn

2 − ci[hn]
. (34)

The modified SRR takes into account both the homogeneity and the size of constituencies.6 The

more homogeneous the constituency is, the lower the voting power of its citizens will be, and

the higher the voting power of their delegate ought to be if all citizens are to have equal powers.

Setting ci = cj = 0 leads to Penrose’s SRR.

Gelman et al. (2002) and Gelman, Katz and Bafumi (2004) offer a critical discussion and

an empirical test of Penrose’s SRR in U.S. presidential elections. Their evidence refutes the

binomial model of voting and hence also the SRR as a rule of fair representation. Equation (34)

shows the magnitude of the bias in the SRR due to correlation between votes.7

6 Summary and Conclusions

The crucial probabilistic assumption underlying the classical measures of voting power is that

each member of the voting body votes independently of all other members. In the case of the

Banzhaf measure this assumption is supplemented by that of equal probabilities of YES and NO

votes for each member.

By means of a numerical scheme for computing the Banzhaf swing probability when the votes

5Proposition 2 allows relaxing both assumptions. The consequences of relaxing the equiprobability assumption
have been discussed in the literature, so I focus on correlation. Since the parity of n does not qualitatively alter
the result, the equation for an odd n is used.

6Barbera and Jackson (2006) derive a rule of fair representation and a voting rule that maximize the sum of
the utilities of citizens in all constituencies. In their model “a country’s population can be partitioned into blocks:
citizens within a block have perfectly correlated preferences, whereas citizens across blocks have independent
preferences” (p. 319). This model of heterogeneity reduces the problem to that of blocks’ sizes alone.

7Other probabilistic voting models may well cause more serious distortions. On an optimistic note, the simula-
tion study by Maaser and Napel (2007) shows Penrose’s SRR to be robust for a particular family of distributions.
But they assume independent votes.
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are neither equiprobable nor independent, this paper studies the magnitude of numerical error or

bias in the Banzhaf absolute measure that occurs if neither assumption is met. The numerical

scheme admits varying probabilities and correlation coefficients, which makes it suitable for

empirical implementation, such as the calibration of an accurate model of a voting body based

on beliefs about the preferences of individual members and the degree of commonality or rivalry

between them, or the estimation of such a model from ballot data. An analytical solution is

provided for a model in which probabilities are identical, but correlation coefficients vary.

The analytical part derives the exact magnitude of the bias for an unweighted simple-majority

game in which the probability of an affirmative vote is the same for all members and the cor-

relation coefficients are the same for any pair of members. The bias incurred by the common

probability deviating from one half can be positive or negative depending on the probability

and the size of the voting body, although it is always positive when the number of members

is odd. The probability bias is more serious than that incurred by the common coefficient of

correlation deviating from zero. The former is a polynomial function, whereas the latter is a

linear function of the deviation. Positive correlation between members of a voting body will

reduce the voting power of the independent member, negative correlation will have the opposite

effect. The magnitude of either bias increases with the size of the voting body.

The magnitude of the bias in a weighted voting game cannot be studied analytically due to

the characteristic function of such a game not being amenable to combinatorial methods, despite

it being independent of the stochastic properties of the votes. The approach to general weighted

voting games has to remain that of listing all voting outcomes in which the independent voter is

decisive and summing their probabilities of occurrence. However, the proposed method allows

the bias in any weighted voting game to be computed numerically.

As a further result I derive a modified square-root rule for the representation in two-tier
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voting systems that takes into account the sizes of the constituencies and the heterogeneity

of their electorates. Since in a homogeneous electorate the votes are positively correlated, the

larger and the more homogeneous the electorate, the less power a vote has.

The main conclusion of this paper is that, despite the Banzhaf measure being a valid measure

of a priori voting power and thus useful for evaluating the rules at the constitutional stage of a

voting body, it is a poor measure of the actual probability of being decisive at any time past that

stage. The Banzhaf measure cannot be used to forecast how frequent a voter will be decisive.

A Appendix: Solution to the optimization problem

Write the Lagrangian L(x) as

Φ(x)+λ

[

∑

v∈V

xV (v) − 1

]

+

m
∑

i=1

µi





∑

v∈V(i)

xV (v) − p



+

m−1
∑

i=1

m
∑

j=i+1

κi,j





∑

v∈V(i,j)

xV (v) − (p2 + pqci,j)





(35)

where the objective function is given by Φ(x) = 1
2

∑

v∈V

[

xV (v) − p
∑m

i=1 viqm−
∑m

i=1 vi

]2
.

Vector x is a probability vector of length 2m. The subscript V (v) =
m
∑

i=1
2m−i(1 − vi) + 1

indicates the coordinate of x that corresponds to the probability of the voting outcome v, so

that the coordinates of x are indexed in the descending order of the decimals represented by the

corresponding binary vectors of voting outcomes, starting from the vector of m ones. Indexing

is necessary for taking a derivative of L(x).

The first-order condition ∂L(x)
∂x

= 0 implies

xV (v) = p
∑m

i=1 viqm−
∑m

i=1 vi − λ −
m

∑

i=1

µivi −
m−1
∑

i=1

m
∑

j=i+1

κi,jvivj . (36)
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Substitution into the first constraint yields

4λ + 2

m
∑

i=1

µi +

m−1
∑

i=1

m
∑

j=i+1

κi,j = 0. (37)

When substituting (36) into the second set of constraints note that the sum is now taken over the

set of all vectors having 1 as their i-th coordinate. We need to distinguish between coordinates

to the left and the right of the i-th coordinate. Upon the substitution of (36) we have

4(λ + µi) + 2









m
∑

j=1
j 6=i

µj +

i−1
∑

j=1

κj,i +

m
∑

j=i+1

κi,j









+

m−1
∑

k=1
k 6=i

m
∑

l=k+1
l 6=i

κk,l = 0, (38)

which in view of (37) simplifies to

2µi +

i−1
∑

j=1

κj,i +

m
∑

j=i+1

κi,j = 0. (39)

Similarly, the sum in the third set of constraints is taken over the set of all vectors having 1 as

their i-th and j-th coordinates. Now we need to distinguish between coordinates to the left of

the i-th coordinate, to the right of the j-th coordinate, and in between the two. Thus,

24−mpqci,j + 4(λ + µi + µj + κi,j) +

+2









m
∑

k=1
k 6=i,j

µk +
m

∑

k=i+1
k 6=j

κi,k +
i−1
∑

k=1

κk,i +
m

∑

l=j+1

κj,l +

j−1
∑

l=1
l 6=i

κl,j









+
m−1
∑

k=1
k 6=i,j

m
∑

l=k+1
l 6=i,j

κk,l = 0. (40)

In view of (37) and (39) the above expression simplifies to

κ∗
i,j = −24−mpqci,j. (41)
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Plugging (41) into (37) and (39) yields all other Lagrangian multipliers and the solution x∗
V (v)

µ∗
i = 23−mpq





i−1
∑

j=1

cj,i +

m
∑

j=i+1

ci,j



 ; (42)

λ∗
i = −22−mpq

m−1
∑

i=1

m
∑

j=i+1

ci,j (after some algebraic manipulations); (43)

x∗
V (v) = p

∑m
i=1 viqm−

∑m
i=1 vi + 22−mpq

m−1
∑

i=1

m
∑

j=i+1

ci,j − 23−mpq

m
∑

i=1

vi





i−1
∑

j=1

cj,i +

m
∑

j=i+1

ci,j



 +

+ 24−mpq

m−1
∑

i=1

m
∑

j=i+1

ci,jvivj for v ∈ V and 1 ≤ i < j ≤ m. (44)

The V (v)-th coordinate of x∗
V (v) represents the probability of occurrence of voting outcome v.
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Table 1: Game: {3; 1, 1, 1, 1}

Case A B C D E

Coalitions p = 0.5 p = 0.5 p = 0.5 p = 0.75 p = 0.75

v1 v2 v3 v4 Winning Decisive c = 0 c = 0.2 c = −0.2 c = 0 c = 0.2

1 1 1 1
√

- 0.125 0.200 0.050 0.422 0.478

1 1 1 0
√ √

0.125 0.100 0.150 0.141 0.122

1 1 0 1
√ √

0.125 0.100 0.150 0.141 0.122

1 1 0 0 - - 0.125 0.100 0.150 0.047 0.028

1 0 1 1
√ √

0.125 0.100 0.150 0.141 0.122

1 0 1 0 - - 0.125 0.100 0.150 0.047 0.028

1 0 0 1 - - 0.125 0.100 0.150 0.047 0.028

1 0 0 0 - - 0.125 0.200 0.050 0.016 0.072

Bz1(4, p, c) 0.375 0.300 0.450 0.422 0.366

Absolute bias 0.000 0.075 -0.075 -0.047 0.009

Relative bias - 0.200 -0.200 -0.125 0.025



Table 2: Game: {6; 4, 2, 2, 1}

Coalitions p = 0.5, c = 0 p = 0.5, c∗

v1 v2 v3 v4 Winning Decisive VOTER 1

1 1 1 1
√ √

0.125 0.275

1 1 1 0
√ √

0.125 0.025

1 1 0 1
√ √

0.125 0.100

1 1 0 0
√ √

0.125 0.100

1 0 1 1
√ √

0.125 0.100

1 0 1 0
√ √

0.125 0.100

1 0 0 1 - - 0.125 0.025

1 0 0 0 - - 0.125 0.275

Bz1(4, p,c) 0.750 0.700

Absolute bias 0.000 -0.050

Relative bias - -0.067

v1 v2 v3 v4 Winning Decisive VOTER 2

1 1 1 1
√

- 0.125 0.2125

1 1 1 0
√

- 0.125 0.0625

1 1 0 1
√ √

0.125 0.0625

1 1 0 0
√ √

0.125 0.1625

0 1 1 1 - - 0.125 0.1625

0 1 1 0 - - 0.125 0.0625

0 1 0 1 - - 0.125 0.0625

0 1 0 0 - - 0.125 0.2125

Bz2(4, p,c) 0.250 0.225

Absolute bias 0.000 -0.025

Relative bias - -0.100

v1 v2 v3 v4 Winning Decisive VOTER 4

1 1 1 1
√

- 0.125 0.175

1 1 0 1
√

- 0.125 0.100

1 0 1 1
√

- 0.125 0.100

1 0 0 1 - - 0.125 0.125

0 1 1 1 - - 0.125 0.125

0 1 0 1 - - 0.125 0.100

0 0 1 1 - - 0.125 0.100

0 0 0 1 - - 0.125 0.175

Bz4(4, p,c) 0.000 0.000

Absolute bias 0.000 0.000

Relative bias - -

*c1,2 = c1,3 = c1,4 = 0.1, c2,3 = 0.2, c2,4 = c3,4 = 0.5



Figure 1: The absolute Bz measure of voting power in unweighted simple-majority games
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The probability of a YES vote p ∈ [0, 1] is identical for all voters and the coefficient of correlation c ∈ [0, 1]
between two YES votes is identical for all pairs of voters. The Bz measure is unbiased when p = 0.5 and
c = 0 (filled points). The probability bias incurred by p deviating from 0.5 is polynomial, whereas the
correlation bias incurred by c deviating from 0 is linear.
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